Penerapan Algoritma Random Forest untuk Prediksi Kebutuhan Nutrisi Harian Sapi Potong Berdasarkan Berat Badan
DOI:
https://doi.org/10.29407/xr4f8f14Keywords:
Nutrisi Sapi, Machine Learning, Random Forest, Prediksi NutrisiAbstract
Penentuan kebutuhan nutrisi sapi potong masih banyak dilakukan menggunakan tabel konvensional sehingga kurang presisi dalam menyesuaikan kebutuhan individu setiap ternak. Hal ini dapat menurunkan efisiensi pakan dan meningkatkan biaya operasional peternakan. Penelitian ini bertujuan mengembangkan sistem prediksi nutrisi sapi potong berbasis Machine Learning untuk mempermudah penyusunan ransum presisi hanya berdasarkan input berat badan. Metode penelitian meliputi pengumpulan data nutrisi sapi dari sumber resmi, perancangan arsitektur sistem prediksi, preprocessing, dan normalisasi data, pelatihan model Random Forest Regression, implementasi sistem, serta evaluasi performa model. Hasil penelitian menunjukkan bahwa model mampu memprediksi kebutuhan nutrisi harian sapi potong untuk parameter BK, PK, TDN, Ca, dan P dengan tingkat akurasi yang sangat baik, dibuktikan oleh nilai evaluasi R² sebesar 0.964. Sistem yang dibangun memungkinkan peternak memperoleh hasil prediksi nutrisi secara cepat dan otomatis tanpa perhitungan manual. Temuan ini menegaskan potensi teknologi prediksi berbasis data dalam mendukung pakan presisi sehingga mampu meningkatkan efisiensi produksi dan mengurangi pemborosan pakan.
Downloads
References
[1] P. Nugraha, R. Rifa’i, C. A. Maskur, dan M. Ervandi, “Faktor–Faktor Yang Memengaruhi Produksi Susu Sapi Perah,” Jurnal Sains Ternak Tropis, vol. 2, no. 1, hlm. 1–11, 2024.
[2] R. D. Haloho dan E. Tarigan, “Manajemen Pakan dan Analisis Profitabilitas Usaha Peternakan Sapi Potong Rakyat di Masa Pandemi Covid 19 di Kabupaten Langkat,” Agrimor, vol. 6, no. 4, hlm. 180–185, 2021.
[3] M. Abadi, T. Saili, dan L. Yunus, Model Pembibitan Wilayah Sumber Bibit Sapi Bali di Indonesia (Tinjauan Peternakan Rakyat Berkelanjutan). Deepublish, 2025.
[4] N. Luthfi, S. Pt, N. Luthfi, dan S. Pt, “MANAJEMEN TERNAK SAPI POTONG,” 2023, UPT Perpustakaan Undaris.
[5] O. A. Rahi, R. Y. V. Sinaga, dan P. Amalo, “Studi Kasus: Praktik Pemberian Pakan dan Dampaknya Terhadap Kinerja Budidaya Udang Vaname di Tambak Intensif Perusahaan Swasta di Nusa Tenggara Barat (NTB),” JURNAL MEGAPTERA, vol. 4, no. 1, hlm. 51–60.
[6] N. Purwati dan T. Widiantoro, “AI and Machine Learning untuk Diagnosis dan Intervensi Dini pada Stunting Balita: A Systematic Literature Review,” Infomatek, vol. 27, no. 1, hlm. 71–86, 2025.
[7] K. S. Triutama, “MANAJEMEN PENGGEMUKAN SAPI POTONG DI PT. SEDANA PETERNAK SENTOSA KECAMATAN KESAMBEN KABUPATEN JOMBANG JAWA TIMUR,” 2025.
[8] S. Mujiyono, U. P. Sanjaya, I. S. Wibisono, dan H. Setyowati, “Prediksi Fluktuasi Berat Badan Berdasarkan Pola Hidup Menggunakan Model XGBoost dan Deep Learning,” Jurnal Algoritma, vol. 22, no. 1, hlm. 221–233, 2025.
[9] M. Putri, “Prediksi penyakit stroke menggunakan machine learning dengan algoritma random forest,” Jurnal Infomedia: Teknik Informatika, Multimedia, dan Jaringan, vol. 9, no. 1, hlm. 16–21, 2024.
[10] F. M. de Oliveira, P. F. P. Ferraz, G. A. e. S. Ferraz, M. N. Pereira, M. Barbari, dan G. Rossi, “Prediction of Body Mass of Dairy Cattle Using Machine Learning Algorithms Applied to Morphological Characteristics,” Animals, vol. 15, no. 7, Apr 2025, doi: 10.3390/ani15071054.
[11] A. Shirzadifar dkk., “A machine learning approach to predict the most and the least feed–efficient groups in beef cattle,” Smart Agricultural Technology, vol. 5, Okt 2023, doi: 10.1016/j.atech.2023.100317.
[12] A. Shirzadifar dkk., “Smart Agricultural Technology A machine learning approach to predict the most and the least feed – efficient groups in beef cattle,” vol. 5, 2023.
[13] M. Ergin, Ö. Koşkan, dan H. Köknaroğlu, “Application of the Different Machine Learning Algorithms to Predict Dry Matter Intake in Feedlot Cattle,” J Agric Sci (Belihuloya), vol. 31, no. 1, hlm. 91–99, 2025, doi: 10.15832/ankutbd.1375383.
[14] H. S. Bhaskaran, M. Gordon, dan S. Neethirajan, “Development of a cloud-based IoT system for livestock health monitoring using AWS and python,” Smart Agricultural Technology, vol. 9, Des 2024, doi: 10.1016/j.atech.2024.100524.
[15] V. Pandith, H. Kour, S. Singh, J. Manhas, dan V. Sharma, “Performance Evaluation of Machine Learning Techniques for Mustard Crop Yield Prediction from Soil Analysis,” Journal of scientific research, vol. 64, no. 02, hlm. 394–398, 2020, doi: 10.37398/jsr.2020.640254.
[16] H. Shree, M. Gordon, dan S. Neethirajan, “Smart Agricultural Technology Development of a cloud-based IoT system for livestock health monitoring using AWS and python,” Smart Agricultural Technology, vol. 9, no. June, hlm. 100524, 2024, doi: 10.1016/j.atech.2024.100524.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Adinda Meylia Salsabila, Fera Annisa, Resty Wulanningrum

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License





