Penggunaan Computer Vision untuk Estimasi Pose Squat sebagai Solusi Alternatif Latihan Kebugaran di Gym
DOI:
https://doi.org/10.29407/fpt1hh30Keywords:
computer vision, mediapipe, opencv, estimasi pose, squat, latihan gymAbstract
Penelitian ini bertujuan untuk memberikan solusi alternatif dalam memastikan form gerakan squat tetap benar melalui teknologi Computer Vision berbasis Python menggunakan MediaPipe dan OpenCV. Latar belakang penelitian ini adalah pentingnya form yang tepat saat melakukan latihan squat untuk mencegah cedera dan memaksimalkan efektivitas latihan, terutama bagi individu yang tidak memiliki akses ke gym trainer. Metode penelitian melibatkan pengembangan sistem estimasi pose yang mendeteksi titik-titik kunci tubuh (landmark) menggunakan MediaPipe, serta perhitungan sudut untuk mengevaluasi form squat secara real-time. Dataset gerakan squat dikumpulkan untuk menguji akurasi sistem. Hasil penelitian menunjukkan bahwa sistem ini mampu mendeteksi kesalahan form squat dan memberikan umpan balik secara efektif dengan akurasi tinggi. Diskusi menekankan manfaat teknologi ini dalam menyediakan solusi pelatihan yang efisien, terjangkau, Hasil pengujian menunjukkan bahwa sistem memiliki performa yang sangat baik dengan akurasi sebesar 100%, presisi 100%, recall 100%, dan F1-score 100%.. Kesimpulannya, implementasi Computer Vision melalui MediaPipe dan OpenCV menawarkan inovasi signifikan dalam bidang latihan kebugaran mandiri dengan teknologi yang mudah diterapkan dan digunakan.
Downloads
References
H. Pardeshi, A. Ghaiwat, and A. Thongire. 2021. “Fitness Freaks : A System For Detecting Definite Body Posture Using Open Pose Estimation”. Mumbai
R. Josyula, S. Ostadabbas. 2021 “A Review on Human Pose Estimation,”. Northeastern University.
Irfan, I., Kartika, K., & Meliala, S. M. S. (2023). Pengiraan Pose Model Manusia Pada Repetisi Kebugaran Ai Pemograman Python Berbasis Komputerisasi. INFOTECH journal, 9(1), 11-19.
Kim, J. W., Choi, J. Y., Ha, E. J., & Choi, J. H. (2023). Human pose estimation using mediapipe pose and optimization method based on a humanoid model. Applied sciences, 13(4), 2700.
Anilkumar, A., KT, A., Sajan, S., & KA, S. (2021, July). Pose estimated yoga monitoring system. In Proceedings of the International Conference on IoT Based Control Networks & Intelligent Systems-ICICNIS.
Kwon, Y., & Kim, D. (2022). Real-Time workout posture correction using OpenCV and MediaPipe., 20(1), 199-208.
Suhandi, V., & Santoso, H. (2024). Personal Training with Tai Chi: Classifying Movement using Mediapipe Pose Estimation and LSTM. Building of Informatics, Technology and Science (BITS), 6(2), 767-775.
Barrack, A. J., Straub, R. K., Cannon, J., & Powers, C. M. (2021). The relative orientation of the trunk and tibia can be used to estimate the demands on the hip and knee extensors during the barbell back squat. International Journal of Sports Science & Coaching, 16(4), 1004-1010.
Straub, R. K., & Powers, C. M. (2024). A biomechanical review of the squat exercise: implications for clinical practice. International Journal of Sports Physical Therapy, 19(4), 490.
Samkari, E., Arif, M., Alghamdi, M., & Al Ghamdi, M. A. (2023). Human Pose Estimation Using Deep Learning: A Systematic Literature Review. Machine Learning and Knowledge Extraction, 5(4), 1612-1659. https://doi.org/10.3390/make5040081
Bradski, G., & Kaehler, A. (2000). OpenCV. Dr. Dobb’s journal of software tools, 3(2).
Putri, R. L. (2016). Peningkatan Kualitas Produk Melalui Penerapan Prosedur dan Sistem Produksi: Studi Pada UD Wijaya Kusuma Kota Blitar. Wahana Riset Akuntansi, 4(2), 813-828.
El Kaid, A., & Baïna, K. (2023). A Systematic Review of Recent Deep Learning Approaches for 3D Human Pose Estimation. Journal of Imaging, 9(12), 275.
Stenum, J., Rossi, C., & Roemmich, R. T. (2021). Two-dimensional video-based analysis of human gait using pose estimation. PLOS Computational Biology, 17(6), e1008935.
Makahaube, S., Sambul, A. M., & Sompie, S. R. (2021). Implementation of Gesture Recognition Technology for Self-Education Service Platform. Jurnal Teknik Informatika, 16(4), 465-472.
Stenum, J., Cherry-Allen, K. M., Pyles, C. O., Reetzke, R. D., Vignos, M. F., & Roemmich, R. T. (2021). Applications of Pose Estimation in Human Health and Performance across the Lifespan. Sensors (Basel, Switzerland), 21(21), 731
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Kevin Ragil Krisna Dyansyah, Septian Dwi Purwantoro, Musthofa Ilmi, Resty Wulanningrum

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License





