Prediksi Degradasi Kesehatan Baterai Kendaraan Listrik Berbasis Machine Learning pada Pengisian Cepat DC

Authors

  • Zulham Kentji Institut Teknologi PLN
  • Samsurizal Samsurizal Institut Teknologi PLN
  • Septiannissa Azzahra Institut Teknologi PLN
  • Dwi Listiawati Institut Teknologi PLN
  • Dody Dody Institut Teknologi PLN
  • Kartika Tresya Mauriraya Institut Teknologi PLN

DOI:

https://doi.org/10.29407/ays90r20

Keywords:

Machine Learning, Prediksi Degradasi, Fast Charging DC

Abstract

Perkembangan kendaraan listrik mendorong penerapan sistem pengisian cepat untuk meningkatkan kenyamanan pengguna. Namun, pengisian cepat dengan arus dan daya tinggi berpotensi mempercepat degradasi kesehatan baterai (State of Health / SoH), yang berdampak pada umur pakai dan keandalan baterai kendaraan listrik. Oleh karena itu, diperlukan pendekatan prediktif yang mampu mengidentifikasi degradasi kesehatan baterai secara akurat sejak dini. Penelitian ini mengusulkan pendekatan machine learning berbasis Random Forest Regressor untuk memprediksi degradasi kesehatan baterai kendaraan listrik pada proses pengisian cepat DC. Dataset diperoleh dari hasil simulasi pengisian cepat yang mempertimbangkan parameter arus pengisian, tegangan DC, suhu baterai, dan State of Charge (SoC). Model dilatih untuk mempelajari hubungan nonlinier antara parameter pengisian cepat dan degradasi kesehatan baterai yang dinyatakan sebagai ΔSoH. Kinerja model dievaluasi menggunakan metrik Mean Absolute Error (MAE), Root Mean Square Error (RMSE), dan koefisien determinasi (R²). Hasil penelitian menunjukkan bahwa model Random Forest mampu memprediksi degradasi kesehatan baterai dengan nilai MAE sebesar 0.00000009, RMSE sebesar 0.00000015, serta nilai R² sebesar 0.999998, yang menunjukkan tingkat akurasi prediksi yang sangat tinggi. Pendekatan ini berpotensi digunakan sebagai dasar pengambilan keputusan dalam pengelolaan sistem pengisian cepat DC yang lebih aman dan berkelanjutan, serta mendukung pengembangan sistem pengisian kendaraan listrik yang cerdas dan berorientasi pada umur pakai baterai.

Downloads

Download data is not yet available.

References

K. T. Chau, C. C. Chan, S. Niu, W. Liu, and T. Liu, “Graduate Degree in Electric Vehicles—A Timely Programme for Modern Society,” World Electric Vehicle Journal, vol. 16, no. 1, p. 31, Jan. 2025, doi: 10.3390/wevj16010031.

[2] F. Alanazi, “Electric Vehicles: Benefits, Challenges, and Potential Solutions for Widespread Adaptation,” Applied Sciences, vol. 13, no. 10, p. 6016, May 2023, doi: 10.3390/app13106016.

[3] R. R. Kumar, C. Bharatiraja, K. Udhayakumar, S. Devakirubakaran, K. S. Sekar, and L. Mihet-Popa, “Advances in Batteries, Battery Modeling, Battery Management System, Battery Thermal Management, SOC, SOH, and Charge/Discharge Characteristics in EV Applications,” IEEE Access, vol. 11, pp. 105761–105809, 2023, doi: 10.1109/ACCESS.2023.3318121.

[4] P. Dini, A. Colicelli, and S. Saponara, “Review on Modeling and SOC/SOH Estimation of Batteries for Automotive Applications,” Batteries, vol. 10, no. 1, p. 34, Jan. 2024, doi: 10.3390/batteries10010034.

[5] B. Babu, P. Simon, A. Balducci, B. Babu, A. Balducci, and P. Simon, “Fast Charging Materials for High Power Applications,” 2020, doi: 10.1002/aenm.202001128.

[6] “A Quick Guide to Fast Charging 1.”

[7] A. Tomaszewska et al., “Lithium-ion battery fast charging: A review,” eTransportation, vol. 1, p. 100011, Aug. 2019, doi: 10.1016/j.etran.2019.100011.

[8] C. Miller, M. Goutham, X. Chen, and S. Stockar, “DC Fast Charging Optimization for Capacity Fade Minimization,” 2022.

[9] S. Samsurizal, A. N. Afandi, and M. R. Faiz, “A Comparative Analysis of Fast Charging Performance and Battery Life Against Charging Current Variations,” ITEGAM- Journal of Engineering and Technology for Industrial Applications (ITEGAM-JETIA, vol. 11, no. 52, pp. 81–86, 2025, doi: 10.5935/jetia.v11i52.1536.

[10] A. N. Afandi and Y. Sulistyorini, “Transformation of Thunderstorm Mechanisms into Computational Intelligence Applied to the Load Dispatch,” in 2019 International Conference on Information and Communications Technology (ICOIACT), IEEE, Jul. 2019, pp. 773–778. doi: 10.1109/ICOIACT46704.2019.8938531.

[11] J. G. Qu, Z. Y. Jiang, and J. F. Zhang, “Investigation on lithium-ion battery degradation induced by combined effect of current rate and operating temperature during fast charging,” J Energy Storage, vol. 52, p. 104811, Aug. 2022, doi: 10.1016/J.EST.2022.104811.

[12] P. Makeen, H. A. Ghali, and S. Memon, “A Review of Various Fast Charging Power and Thermal Protocols for Electric Vehicles Represented by Lithium-Ion Battery Systems,” Mar. 01, 2022, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/futuretransp2010015.

[13] H. Rathore, H. K. Meena, and P. Jain, “Prediction of EV Energy consumption Using Random Forest And XGBoost,” in 2023 International Conference on Power Electronics and Energy (ICPEE), IEEE, Jan. 2023, pp. 1–6. doi: 10.1109/ICPEE54198.2023.10060798.

[14] H. A. Salman, A. Kalakech, and A. Steiti, “Random Forest Algorithm Overview,” Babylonian Journal of Machine Learning, vol. 2024, pp. 69–79, Jun. 2024, doi: 10.58496/BJML/2024/007.

Downloads

Published

2026-01-26

How to Cite

Prediksi Degradasi Kesehatan Baterai Kendaraan Listrik Berbasis Machine Learning pada Pengisian Cepat DC. (2026). Seminar Nasional Teknologi & Sains, 5(1), 1041-1047. https://doi.org/10.29407/ays90r20

Similar Articles

1-10 of 104

You may also start an advanced similarity search for this article.