Classification of Heart Disease Using Decision Tree and Random Forest
DOI:
https://doi.org/10.29407/stains.v2i1.2816Abstract
Salah satu penyakit yang paling banyak menyebabkan kematian adalah penyakit jantung (heart disease). Penyakit jantung juga merupakan penyakit yang paling besar dibiayai oleh BPJS Kesehatan. Sebagai upaya preventif dalam penanganan penyakit jantung, perlu dilakukan prediksi penyakit jantung pada pasien. Proses klasifikasi untuk memprediksi penyakit jantung dilakukan dengan menggunakan decision tree dan random forest. Objek penelitian ini menggunakan Heart Disease Cleveland UCI Dataset dengan 297 record data. Kemudian melakukan k-fold cross validation dengan nilai k = 9 yang menghasilkan data training sebanyak 264 sampel dan data testing sebanyak 33 sampel. Hasil dari kedua klasifikasi akan dibandingkan dengan melihat performa akurasi, precision, recall, dan F1 score.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Sabrina Adnin Kamila, RR Sri Sulistijowati, Irwan Susanto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License





