Sales Forecasting Analysis Using Time Series Method: A Study on Chocolate Banana Snack Business

Authors

  • Sheila Mitha Yogyakarta State University
  • Lilia Pasca Riani Yogyakarta State University

DOI:

https://doi.org/10.29407/kilisuci.v3i.7133

Keywords:

Sales Forecasting, Time Series, Single Exponential Smoothing, Mean Absolute Precentage Error, Small Business

Abstract

Research aim :

The purpose of this research is to analyze the sales trend of the Chocolate Banana snack business in the next period and analyze the accuracy level of chocolate banana snack sales forecasting.

Design/Methode/Approach :

This research is descriptive research with a quantitative approach. There are two stages of data analysis, namely calculating sales forecasting for the next period using time series methods (Moving Average, Weighted Moving Average, and Exponential Smoothing methods. There are 3 types of Exponential Smoothing methods, namely Single Exponential Smoothing (SES) with constant α 0.1 and constant α 0.4, and Linear Exponential Smoothing (LES) with constant α 0.1 / β 0.2). While the second stage is to evaluate the results of the accuracy level of the sales forecasting method with the MAPE technique.

Research Finding :

The result of this study is that the most effective method is the single exponential smoothing method (α 0.4) with the sales forecasting results for the next period of 594, with an accuracy level with MAPE of 5.67%.

Theoretical contribution/Originality :

This research contributes to the application of time series forecasting methods in small-scale food businesses, especially in improving the accuracy of sales predictions.

Practitionel/Policy implication :

The results of this study provide insights for small business owners in the food sector, emphasizing the importance of applying sales forecasting methods to improve decision-making.

Research limitation :

This research is limited to 10 weeks of sales data, making it less accurate for the long term. Further studies are recommended using longer data and more complex methods.

References

[1] F. Ahmad, “PENENTUAN METODE PERAMALAN PADA PRODUKSI PART NEW GRANADA BOWL ST Di PT.X,” JISI: Jurnal Integrasi Sistem Industri, vol. 7, no. 1, p. 31, May 2020, doi: 10.24853/jisi.7.1.31-39.

[2] F. Petropoulos et al., “Forecasting: theory and practice,” Jul. 01, 2022, Elsevier B.V. doi: 10.1016/j.ijforecast.2021.11.001.

[3] L. Wiranda and M. Sadikin, “PENERAPAN LONG SHORT TERM MEMORY PADA DATA TIME SERIES UNTUK MEMPREDIKSI PENJUALAN PRODUK PT. METISKA FARMA,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 8, 2019, doi: https://doi.org/10.23887/janapati.v8i3.19139.

[4] Riaqiati, “Penerapan Metode Single Exponential Smoothing dalam Peramalan Penjualan Benang,” Smart Comp, vol. 10, no. 3, 2021, doi: https://doi.org/10.30591/smartcomp.v10i3.2887.

[5] L. Pasca Riani and M. R. Afandi, “Forecasting Demand Produk Batik Di Tengah Pandemi Covid-19 Studi Pada Usaha Batik Fendy, Klaten,” JURNAL NUSANTARA APLIKASI MANAJEMEN BISNIS, vol. 5, no. 2, pp. 122–132, Oct. 2020, doi: 10.29407/nusamba.v5i2.14441.

[6] S. N. Budiman, “Peramalan Stock Barang Dagangan Menggunakan Metode Single Exponential Smoothing,” Jurnal Teknologi dan Manajemen Informatika, vol. 7, no. 2, pp. 113–121, 2021, doi: https://doi.org/10.26905/jtmi.v7i2.6727.

[7] N. Luh, W. Sri, R. Ginantra, I. Bagus, and G. Anandita, “Penerapan Metode Single Exponential Smoothing Dalam Peramalan Penjualan Barang,” Jurnal Sains Komputer & Informatika (J-SAKTI, vol. 3, pp. 433–441, 2019, doi: http://dx.doi.org/10.30645/j-sakti.v3i2.162.

[8] D. R. Indah and E. Rahmadani, “Sistem Forecasting Perencanaan Produksi dengan Metode Single Eksponensial Smoothing pada Keripik Singkong Srikandi Di Kota Langsa,” JENSI, vol. 2, no. 1, 2018, doi: https://doi.org/10.33059/jensi.v2i1.930.

[9] Jay. Heizer, Barry. Render, and Chuck. Munson, Operations management : sustainability and supply chain management. Pearson, 2020. Accessed: Mar. 23, 2025. [Online]. Available: https://sophora.id/wp-content/uploads/2023/08/operations-management-12ed-jay-heizer-pdfdrive-.pdf

[10] F. Rohman Hariri and C. Mashuri, “Sistem Informasi Peramalan Penjualan dengan Menerapkan Metode Double Exponential Smoothing Berbasis Web,” Generation Journal, vol. 6, no. 1, pp. 2580–4952, doi: https://doi.org/10.29407/gj.v6i1.16204.

[11] N. I. Dewi and L. P. Riani, “ANALISIS FORECASTING DEMAND TERHADAP PENJUALAN ROTI TAWAR (STUDI KASUS DI TOKO ROTI SMART BAKERY),” Prosiding Simposium Nasional Manajemen dan Bisnis, vol. 3, pp. 1–14, 2024, doi: https://doi.org/10.29407/0q82ee55.

[12] A. Anastasya and W. Wahyudin, “Analisis Peramalan dengan Metode Naive, Linear Regression, Moving Average dan Exponential Smoothing (Studi Kasus: PT Artria Widya),” Jurnal Serambi Engineering, vol. 8, no. 3, 2023, doi: https://doi.org/10.32672/jse.v8i3.6602.

[13] J. Vimala and A. Nugroho, “FORECASTING PENJUALAN OBAT MENGGUNAKAN METODE SINGLE, DOUBLE, DAN TRIPLE EXPONENTIAL SMOOTHING ( STUDI KASUS : APOTEK MANDIRI MEDIKA),” Jurnal Penerapan Teknologi Informasi dan Komunikasi, vol. 1, no. 2, 2022, doi: https://doi.org/10.24246/itexplore.v1i2.2022.pp90-99.

[14] A. Lusiana and P. Yuliarty, “PENERAPAN METODE PERAMALAN (FORECASTING) PADA PERMINTAAN ATAP di PT X,” Jurnal Teknik Industri ITN Malang, vol. 10, p. 1, 2020, doi: https://doi.org/10.36040/industri.v10i1.2530.

[15] F. Aditya, D. Devianto, and Maiyastri, “PERAMALAN HARGA EMAS INDONESIA MENGGUNAKAN METODE FUZZY TIME SERIES KLASIK,” Jurnal Matematika UNAND, vol. VIII, pp. 45–52, 2019, doi: https://doi.org/10.25077/jmu.8.2.45-52.2019.

Downloads

Published

2025-06-05

How to Cite

Sales Forecasting Analysis Using Time Series Method: A Study on Chocolate Banana Snack Business. (2025). Proceeding Kilisuci International Conference on Economic & Business, 3, 735-745. https://doi.org/10.29407/kilisuci.v3i.7133

Similar Articles

1-10 of 155

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>