Analisis Banjir Berdasarkan Data Wireless Sensor Network Dengan Metode Regresi dan Korelasi (Studi Kasus: Sungai Babon Semarang)
Wireless Sensor Network
DOI:
https://doi.org/10.29407/2t2rhw63Keywords:
Analisis banjir, Rumusan Penaksiran Banjir, Analisis banjir, Rumusan Penaksiran Banjir, Sungai Babon, Regresi dan Korelasi, Regresi dan KorelasiAbstract
Penelitian ini menggunakan analisis regresi dan korelasi dengan data tinggi muka air dan curah hujan di Sungai Babon Semarang. Data mendukung konsep perhitungan regresi dan korelasi, nilai data dapat dikelompokkan berdasarkan kerentanan atau potensi banjir. Diperoleh hasil korelasi positif atau menunjukkan bahwa variabel dependen dan variabel independen saling mendukung, dengan peningkatan variabel independen yang memberikan pengaruh peningkatan variabel dependen. Persamaan regresi perhitungan diperoleh hasil Y'=95,88282872 + 2,921586X, yang berarti setiap peningkatan 1 variabel independen akan menghasilkan peningkatan 2,921586 pada setiap Y.
Downloads
References
R. D. Pratama, D. J. Setyawan, and B. Santosa, “Kajian Potensi Erosi Di Daerah Aliran Sungai Babon Menggunakan Permodelan GeoWEPP,” G-Smart, vol. 3, no. 2, p. 98, 2021, doi: 10.24167/gs.v3i2.1892.
K. Haddad, A. Rahman, and F. Ling, “Méthode régionale d’analyse de fréquence des crues pour la Tasmanie, en Australie : une étude de cas sur la comparaison des approches par région fixe et par région d’influence,” Hydrol. Sci. J., vol. 60, no. 12, pp. 2086–2101, 2015, doi: 10.1080/02626667.2014.950583.
M. Majid et al., “Applications of Wireless Sensor Networks and Internet of Things Frameworks in the Industry Revolution 4.0: A Systematic Literature Review,” Sensors, vol. 22, no. 6, pp. 1–36, 2022, doi: 10.3390/s22062087.
C. Tunca, S. Isik, M. Y. Donmez, and C. Ersoy, “Distributed mobile sink routing for wireless sensor networks: A survey,” IEEE Commun. Surv. Tutorials, vol. 16, no. 2, pp. 877–897, 2014, doi: 10.1109/SURV.2013.100113.00293.
C. Y. Aung, B. C. Seet, M. Zhang, L. F. Xie, and P. H. J. Chong, “A Review of Group Mobility Models for Mobile Ad Hoc Networks,” Wirel. Pers. Commun., vol. 85, no. 3, pp. 1317–1331, 2015, doi: 10.1007/s11277-015-2842-z.
I. R. Widiasari, L. E. Nugroho, and Widyawan, “A general purpose model for context aware based flood monitoring system,” J. Teknol., vol. 78, no. 6–3, pp. 29–33, 2016, doi: 10.11113/jt.v78.8924.
B. A. Begum and S. V. Nandury, “Data aggregation protocols for WSN and IoT applications – A comprehensive survey,” J. King Saud Univ. - Comput. Inf. Sci., vol. 35, no. 2, pp. 651–681, 2023, doi: 10.1016/j.jksuci.2023.01.008.
D. Dewatama, O. Melfazen, and M. Fauziyah, “Implemantation of firefly algorithm on Arduino Uno,” Bull. Electr. Eng. Informatics, vol. 12, no. 6, pp. 3593–3600, 2023, doi: 10.11591/eei.v12i6.5362.
Harsiti, Z. Muttaqin, and E. Srihartini, “Penerapan Metode Regresi Linier Sederhana Untuk Prediksi Persediaan Obat Jenis Tablet,” JSiI (Jurnal Sist. Informasi), vol. 9, no. 1, pp. 12–16, 2022, doi: 10.30656/jsii.v9i1.4426.
S. Adiguno, Y. Syahra, and M. Yetri, “Prediksi Peningkatan Omset Penjualan Menggunakan Metode Regresi Linier Berganda,” J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 1, no. 4, p. 275, 2022, doi: 10.53513/jursi.v1i4.5331.
N. Almumtazah, N. Azizah, Y. L. Putri, and D. C. R. Novitasari, “Prediksi Jumlah Mahasiswa Baru Menggunakan Metode Regresi Linier Sederhana,” J. Ilm. Mat. Dan Terap., vol. 18, no. 1, pp. 31–40, 2021, doi: 10.22487/2540766x.2021.v18.i1.15465.
A. Anggrawan, H. Hairani, and N. Azmi, “Prediksi Penjualan Produk Unilever Menggunakan Metode Regresi Linear,” J. Bumigora Inf. Technol., vol. 4, no. 2, pp. 123–132, 2022, doi: 10.30812/bite.v4i2.2416.
A. T. Nurani, A. Setiawan, and B. Susanto, “Perbandingan Kinerja Regresi Decision Tree dan Regresi Linear Berganda untuk Prediksi BMI pada Dataset Asthma,” J. Sains dan Edukasi Sains, vol. 6, no. 1, pp. 34–43, 2023, doi: 10.24246/juses.v6i1p34-43.
A. Ferdyana, V. E. Sakti, R. Wulanningrum, W. C. Utomo, and R. H. Irawan, “Implementasi Metode Logika Fuzzy Sebagai Pendeteksi Kebakaran Menggunakan Klasifikasi Citra Tangan Implementation of Fuzzy Logic Method As Fire Detection Using Hand Image Classification,” vol. 11, no. 2, pp. 199–204, 2023.
S. Sandiwarno, “Penerapan Machine Learning Untuk Prediksi Bencana Banjir,” J. Sist. Inf. Bisnis, vol. 14, no. 1, pp. 62–76, 2024, doi: 10.21456/vol14iss1pp62-76.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Gerry Santos Lasatira, Rizki Brilian Sandi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License





