Deteksi Gambar Hewan Serupa Berdasarkan Warna Menggunakan Metode Content-Based Image Retrieval (CBIR)
DOI:
https://doi.org/10.29407/y8zkpr38Keywords:
Content-Based Image Retrieval, Warna, Deteksi Gambaf, HewanAbstract
Kemajuan teknologi dalam pengolahan citra digital telah membuka peluang besar dalam pengembangan sistem deteksi dan pencarian gambar berbasis konten. Salah satu pendekatan yang banyak digunakan adalah Content-Based Image Retrieval (CBIR), yang memungkinkan pencarian gambar berdasarkan karakteristik visual seperti warna, tekstur, dan bentuk. Proses pengembangan sistem melibatkan ekstraksi fitur warna menggunakan histogram warna, perhitungan kemiripan gambar menggunakan metode pengukuran jarak, serta evaluasi kinerja sistem berdasarkan presisi dan akurasi. Penelitian ini bertujuan untuk mengembangkan dan mengimplementasikan metode CBIR yang efektif dalam mendeteksi gambar hewan serupa dengan representasi warna yang tepat
Downloads
References
V. Tyagi, “Content-Based Image Retrieval,” Springer, 2017. doi: https://doi.org/10.1007/978-981-10-
-4.
N. R. Hanggara, R. Kumalasari Niswatin, and P. Kasih, “Penerapan Content Based Image Retrieval Untuk
Pengenalan Jenis Ikan Koi,” Seminar Nasional Inovasi Teknologi , vol. 05, no. 01, pp. 1–6, 2021.
H. Syarif and P. N. Andono, “Content Based Image Retrieval Berbasis Color Histogram Untuk
Pengklasifikasian Ikan Koi Jenis Kohaku,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika),
vol. 8, no. 2, pp. 616–626, 2023, doi: 10.29100/jipi.v8i2.3612.
R. Amalia, “Penerapan Metode Content Based Image Retrieval (CBIR) Dengan Algoritma Shingling Pada
Aplikasi Kemiripan Gambar,” PhD diss., Universitas Islam Negeri Sumatera Utara, 2021.
M. A. Rahman, I. S. Wasista, M. Kom, and L. Belakang, “Sistem Pengenalan Wajah Menggunakan
Webcam Untuk Absensi Dengan Metode Template Matching,” Elektronika, pp. 1–6, 2015
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Muhammad Akbar Kurniawan, Yanuar Kartiasari, Nadiya Zahrotur Rohmah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License





