Perbandingan Metode K-means and Agglomerative Nesting untuk Clustering Data Digital Marketing di Twitter
DOI:
https://doi.org/10.29407/stains.v2i1.2898Keywords:
Clustering, K-means, Agglomerative Nesting, Digital MarketingAbstract
Banyak masyarakat yang meraup keuntungan besar dari penjualan online dan digital marketing atau promosi di berbagai platform media sosial. Twitter merupakan salah satu media sosial paling berpengaruh di dunia, banyak brand yang memanfaatkan platform ini untuk melakukan digital marketing. Clustering dapat diimplementasikan di berbagai aspek yang berhubungan dengan pengelompokan data. Metode yang digunakan pada penelitian ini adalah metode K-means dan Agglomerative Nesting (AGNES) clustering (single linkage, average linkage, complete linkage, dan ward linkage). Data yang digunakan merupakan data API Twitter dengan keyword “Rp 0” yang merupakan trending pada tanggal 10, bulan 10 tahun 2022 Hasil penelitian menunjukan bahwa metode terbaik untuk melakukan clustering pada data digital marketing Twitter adalah metode AGNES dengan complete linkage dengan K=2 dan Silhouette_Score 0.754428965. Jumlah data cluster C0 sebanyak 423 data tweet dan cluster C1 sebanyak 726 data tweet.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Nandya Arifa Wulandari, Hasih Pratiwi, Sri Sulistijowati Handayani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License





