Pengenalan Tulisan Tangan Per Kata Menggunakan Metode Convolutional Neural Network
DOI:
https://doi.org/10.29407/004vnt54Keywords:
citra digital, convolutional neural network, pengenalan tulisan tangan, tulisan tangan per kataAbstract
Tulisan tangan masih banyak digunakan dalam berbagai dokumen sehingga diperlukan sistem pengenalan yang mampu membaca tulisan tangan secara otomatis dan akurat. Penelitian ini bertujuan untuk mengembangkan sistem pengenalan tulisan tangan per kata menggunakan metode Convolutional Neural Network (CNN) berbasis pengolahan citra digital. Proses penelitian diawali dengan pengumpulan dataset citra tulisan tangan, dilanjutkan dengan tahap preprocessing yang meliputi konversi grayscale, normalisasi, dan perubahan ukuran citra. Setiap citra kata digunakan sebagai data masukan untuk proses pelatihan model CNN. Model yang telah dilatih kemudian diuji untuk mengukur tingkat akurasi pengenalan kata tulisan tangan. Implementasi sistem dilakukan dalam bentuk aplikasi berbasis web yang memungkinkan pengguna mengunggah citra tulisan tangan dan memperoleh hasil prediksi kata secara otomatis. Hasil pengujian menunjukkan bahwa metode CNN mampu mengenali tulisan tangan per kata dengan tingkat akurasi yang baik pada data uji. Penelitian ini menunjukkan bahwa pendekatan CNN efektif digunakan dalam sistem pengenalan tulisan tangan dan berpotensi diterapkan pada berbagai kebutuhan pengolahan dokumen berbasis citra.
Downloads
References
[1] R. C. Gonzalez dan R. E. Woods, Digital Image Processing, 4th ed. New York: Pearson, 2018.
[2] Y. LeCun, Y. Bengio, dan G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.
[3] A. Krizhevsky, I. Sutskever, dan G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105, 2012.
[4] C. M. Bishop, Pattern Recognition and Machine Learning. New York: Springer, 2006.
[5] S. Impedovo, L. Ottaviano, dan S. Occhinegro, “Optical character recognition—A survey,” Int. J. Pattern Recognition and Artificial Intelligence, vol. 5, no. 1–2, pp. 1–24, 1991.
[6] U. Pal dan B. B. Chaudhuri, “Indian script character recognition: A survey,” Pattern Recognition, vol. 37, no. 9, pp. 1887–1899, 2004.
[7] M. Liwicki dan H. Bunke, “Handwritten text recognition of historical documents,” Pattern Analysis and Applications, vol. 12, no. 4, pp. 361–375, 2009.
[8] S. Haykin, Neural Networks and Learning Machines, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2009.
[9] I. Goodfellow, Y. Bengio, dan A. Courville, Deep Learning. Cambridge, MA: MIT Press, 2016.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Muhammad Arief Pramana, Muhammad Wahyu Rifa'i

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License





