Sistem Simulasi Pembelian Saham Bank Berbasis Deep Learning Dengan Metode Transformers
DOI:
https://doi.org/10.29407/9a3d5k13Keywords:
saham, simulasi,, sistem, transformers,, deep learning, koefisien determinasi.Abstract
Saham adalah sebuah bukti kepemilikan sebuah perusahaan, ketika investor membeli sebuah saham dari sebuah perusahaan, maka investor membeli sebagian perusahaan tersebut. Melakukan simulasi sebelum melakukan pembelian saham jarang di lakukan oleh investor untuk mengurangi potensi kerugian saat membeli saham, maka dibutuhkan sistem simulasi dengan bantuan mesin atau sistem yang dapat mempelajari pola pergerakan saham dengan baik, pada penelitian ini sistem simulasi dilengkapi dengan model deep learning transformers yang dapat mengenali pola pergerakan harga saham dengan baik. Dengan sistem simulasi yang dilengkapi dengan transformers, investor dapat memperkirakan dan membuat strategi pembelian saham dimasa depan dan mengurangi kerugian yang besar. Hasil dari penelitian ini membuktikan bahwa transformers memberikan error yang sangat rendah dengan rata rata error 0.124062516 dan rata rata koefisien determinasi sebesar 0.923312, dengan error yang sangat kecil dan kemampuan model dalam mengenali pola sebesar 93% maka simulasi di harapkan akan memberikan hasil yang akurat.
Downloads
References
[1] P. Pandaya, P. D. Julianti, and I. Suprapta, “Pengaruh faktor fundamental terhadap return saham,” Jurnal akuntansi, vol. 9, no. 2, pp. 233–243, 2020.
[2] I. N. Sujana, “Pasar modal yang efisien,” Ekuitas: Jurnal Pendidikan Ekonomi, vol. 5, no. 2, pp. 33–40, 2017.
[3] H. C. Yap and F. Firnanti, “Faktor-faktor yang mempengaruhi return saham,” Jurnal Bisnis Dan Akuntansi, vol. 21, no. 1a–1, pp. 27–38, 2019.
[4] G. Sonkavde, D. S. Dharrao, A. M. Bongale, S. T. Deokate, D. Doreswamy, and S. K. Bhat, “Forecasting stock market prices using machine learning and deep learning models: A systematic review, performance analysis and discussion of implications,” International Journal of Financial Studies, vol. 11, no. 3, p. 94, 2023.
[5] P. Clara, “Alur Prosedur Menjadi Agen Brilink Pada PT. Bank BRI Mikro BO Palembang A Rivai,” Jurnal Bisnis Dan Manajemen (JURBISMAN), vol. 2, no. 1, pp. 23–36, 2024.
[6] S. O. Bunga and H. Riofita, “Strategi Pemasaran Bank BCA dalam Menciptakan Nilai Kepuasan dan Loyalitas Pelanggan,” PENG: Jurnal Ekonomi dan Manajemen, vol. 2, no. 2, pp. 1971–1976, 2025.
[7] N. D. Astari, D. Hermawan, and R. Pakpahan, “Analisis Tingkat Kesehatan Bank Dengan Menggunakan Metode RGEC: Studi Kasus Pada PT Bank Mandiri (Persero), Tbk,” Indonesian Journal of Economics and Management, vol. 1, no. 3, pp. 615–627, 2021.
[8] W. McKinney, “pandas: a foundational Python library for data analysis and statistics,” Python for high performance and scientific computing, vol. 14, no. 9, pp. 1–9, 2011.
[9] A. Mandal, Y. Shao, and X. Liu, “Automatic Historical Stock Price Dataset Generation Using Python,” arXiv preprint arXiv:2308.13414, 2023.
[10] A. Alabrah, “An improved CCF detector to handle the problem of class imbalance with outlier normalization using IQR method,” Sensors, vol. 23, no. 9, p. 4406, 2023.
[11] F. Giuliari, I. Hasan, M. Cristani, and F. Galasso, “Transformer networks for trajectory forecasting,” in 2020 25th international conference on pattern recognition (ICPR), IEEE, 2021, pp. 10335–10342.
[12] A. Vaswani et al., “Attention Is All You Need,” Jun. 2017, [Online]. Available: http://arxiv.org/abs/1706.03762
[13] P.-C. Chen, H. Tsai, S. Bhojanapalli, H. W. Chung, Y.-W. Chang, and C.-S. Ferng, “A simple and effective positional encoding for transformers,” arXiv preprint arXiv:2104.08698, 2021.
[14] A. Graves, “Generating Sequences With Recurrent Neural Networks,” Aug. 2013, [Online]. Available: http://arxiv.org/abs/1308.0850
[15] R. Girshick, “Fast R-CNN,” Apr. 2015, [Online]. Available: http://arxiv.org/abs/1504.08083
[16] Kingma D P and Ba J, “ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION,” arXiv preprint arXiv:1412.6980, vol. 1412, no. 6, 2014.
[17] D. J. Olive, “Multiple linear regression,” in Linear regression, Springer, 2017, pp. 17–83.
[18] A. De Myttenaere, B. Golden, B. Le Grand, and F. Rossi, “Mean absolute percentage error for regression models,” Neurocomputing, vol. 192, pp. 38–48, 2016.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Yudo Nidlom Firmansyah, Rafli Ardiansyah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License





