Pendeteksian Kecurangan Ujian Melalui CCTV Menggunakan Algoritma YOLOv5

Exam Cheating Detection Through CCTV Using YOLOv5 Algorithm

Authors

DOI:

https://doi.org/10.29407/stains.v3i1.4360

Keywords:

deteksi, kecurangan, ujian, CCTV, YOLOv5

Abstract

Penggunaan teknologi di sektor pendidikan, khususnya ketika ujian, masih menghadapi tantangan berupa tingkat kecurangan yang tinggi. Salah satu penerapan teknologi ini adalah pendeteksian kecurangan saat ujian menggunakan CCTV. YOLO merupaan salah satu metode yang cukup handal untuk melakukan deteksi objek, dan YOLOv5 adalah salah satu varian YOLO yang mampu memberikan performa baik pada perangkat yang minim.Penelitian ini mengusulkan penerapan algoritma YOLOv5 untuk mendeteksi kecurangan melalui CCTV. Penelitian ini fokus pada efisiensi dan performa, dengan membandingkan tiga varian YOLOv5, yaitu YOLOv5l, YOLOv5m, dan YOLOv5s. Dataset yang digunakan merupakan rekaman video CCTV yang berada pada ruang kelas, dimana dataset ini terdiri dari 5 kelas (1 kelas normal, dan 4 kelas tindakan kecurangan). Pengujian dilakukan dengan membandingkan performa dari ketiga varian YOLOv5. Berdasarkan hasil pengujian, beban komputasi YOLOv5s saat pelatihan adalah 9,1 ms, 7x jauh lebih kecil dari pada YOLOv5l dan 3x lebih kecil dari YOLOv5m. Selain itu performa YOLOv5s lebih baik dibandingkan dengan YOLOv5l dan YOLOv5m, dengan akurasi, AP, AR dan mAP:50 sebesar 0,43, 0,492, 0,431,dan 0,549 secara berurutan. Hasil tersebut menegaskan bahwa YOLOv5s yang terbaik baik secara beban komputasi maupun performa. Meskipun demikian, perlu dilakukan perbaikan kualitas dan kuantitas dataset dan juga metode untuk meningkatkan performa dari pendeteksi kecurangan melalui CCTV ini.

Downloads

Download data is not yet available.

References

H. Cai and I. King, “Education Technology for Online Learning in Times of Crisis,” in Proceedings of 2020 IEEE International Conference on Teaching, Assessment, and Learning for Engineering, TALE 2020, Institute of Electrical and Electronics Engineers Inc., Dec. 2020, pp. 758–763. doi: 10.1109/TALE48869.2020.9368387.

L. Al-Labadi and S. Sant, “Enhance Learning Experience Using Technology In Class,” J Technol Sci Educ, vol. 11, no. 1, pp. 44–52, Sep. 2021, doi: 10.3926/jotse.1050.

M. Alahmari, “Exploring the Influential Factors Affecting Staff Willingness to Adopt Augmented Reality,” International Journal of Information and Education Technology, vol. 13, no. 7, pp. 1078–1084, Jul. 2023, doi: 10.18178/ijiet.2023.13.7.1907.

S. R. Sletten, “Rethinking Assessment: Replacing Traditional Exams with Paper Reviews,” J Microbiol Biol Educ, vol. 22, no. 2, Sep. 2021, doi: 10.1128/jmbe.00109-21.

É. Cambron-Goulet, J. P. Dumas, É. Bergeron, L. Bergeron, and C. St-Onge, “Guidelines for Creating Written Clinical Reasoning Exams: Insight from a Delphi Study,” Health Professions Education, vol. 5, no. 3, pp. 237–247, Sep. 2019, doi: 10.1016/j.hpe.2018.09.001.

R. Ellis, J. Cleland, D. SG. Scrimgeour, A. J. Lee, J. Hines, and P. A. Brennan, “Establishing the predictive validity of the intercollegiate membership of the Royal Colleges of surgeons written examination: MRCS Part A,” The Surgeon, Aug. 2023, doi: 10.1016/j.surge.2023.07.004.

A. Manurung, A. Fildzah, and J. Rajagukguk, “Computer Based Test (CBT) System for Student Academic Examination,” European Alliance for Innovation n.o., Oct. 2019. doi: 10.4108/eai.18-10-2018.2287186.

A. Fadillah, “Hubungan Antara Efikasi Diri Dengan Perilaku Menyontek Pada Mahasiswa,” Psikoborneo: Jurnal Ilmiah Psikologi, vol. 7, no. 4, pp. 657–664, 2019.

D. Septiana, “HUBUNGAN EFIKASI DIRI DAN STRES AKADEMIK DENGAN PERILAKU MENYONTEK SISWA,” UNIVERSITAS ISLAM NEGERI RADEN INTAN LAMPUNG, Lampung, 2022. Accessed: Nov. 18, 2023. [Online]. Available: http://repository.radenintan.ac.id/17318/

C. M. Ifeagwazi, J. C. Chukwuorji, S. O. Egbodo, and M. B. Nwoke, “Peer pressure, fear of failure and examination cheating behavior in the university: Does gender make the difference?,” Cognition, Brain, Behavior. An Interdisciplinary Journal , vol. 23, no. 1, pp. 43–62, 2019, doi: 10.24193/cbb.2019.23.03.

J. Nishchal, S. Reddy, and P. N. Navya, “Automated Cheating Detection in Exams using Posture and Emotion Analysis,” in 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), IEEE, Jul. 2020, pp. 1–6. doi: 10.1109/CONECCT50063.2020.9198691.

C. Wu, Q. Luo, and D. Shou, “Image Recognition Technology and Development of YOLO Algorithm,” in Advances in Transdisciplinary Engineering, IOS Press BV, Dec. 2022, pp. 32–38. doi: 10.3233/ATDE221146.

T. Diwan, G. Anirudh, and J. V. Tembhurne, “Object detection using YOLO: challenges, architectural successors, datasets and applications,” Multimed Tools Appl, vol. 82, no. 6, pp. 9243–9275, Mar. 2023, doi: 10.1007/s11042-022-13644-y.

V. Senthilkumar, G. Kanagaraj, T. Primya, J. Joycema, M. B. Joan, and J. A. Vicram, “Application of AI And Computer Vision To Face Mask And Social Distance Detection in CCTV Video Streams,” in 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), IEEE, Oct. 2021, pp. 1–5. doi: 10.1109/ICAECA52838.2021.9675746.

B. Hardiansyah and A. Primasetya, “Sistem Deteksi Penggunaan masker (Face Mask Detection) Menggunakan Algoritma Deep Learning YOLOv4,” STAINS (SEMINAR NASIONAL TEKNOLOGI & SAINS), vol. 2, no. 1, pp. 313–318, Jan. 2023, Accessed: Dec. 25, 2023. [Online]. Available: https://proceeding.unpkediri.ac.id/index.php/stains/article/view/2820

A. Srinivasan, A. Srikanth, H. Indrajit, and V. Narasimhan, “A Novel Approach for Road Accident Detection using DETR Algorithm,” in 2020 International Conference on Intelligent Data Science Technologies and Applications, IDSTA 2020, Institute of Electrical and Electronics Engineers Inc., Oct. 2020, pp. 75–80. doi: 10.1109/IDSTA50958.2020.9263703.

E. P. Ijjina, A. S. Joshi, and G. Kanahasabai, “Detection of Customer Interested Garments in Surveillance Video using Computer Vision,” in 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India: IEEE, Jul. 2020, pp. 1–5. doi: 10.1109/ICCCNT49239.2020.9225571.

N. Chhadikar, P. Bhamare, K. Patil, and S. Kumari, “Image processing based Tracking and Counting Vehicles,” in 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India: IEEE, Jun. 2019, pp. 335–339. doi: 10.1109/ICECA.2019.8822070.

A. Arinaldi and M. I. Fanany, “Cheating Video Description Based on Sequences of Gestures,” in 2017 5th International Conference on Information and Communication Technology, ICoIC7 2017, Institute of Electrical and Electronics Engineers Inc., Oct. 2017. doi: 10.1109/ICoICT.2017.8074679.

A. Zaffar, M. Jawad, M. Shabbir, P. O. Factory, and W. Cantt, “A Novel CNN-RNN Model for E-Cheating Detection Based on Video Surveillance,” UW JOURNAL OF CMPUTER SCIENCE, vol. 5, no. 1, Jun. 2023, Accessed: Sep. 11, 2023. [Online]. Available: https://uwjcs.org.pk/index.php/ojs/article/view/64

M. T. Mulyani, “Analisis Perbandingan Algoritma Yolov5 Dan Yolov7 Dalam Pendeteksian Penyakit Padi Pada Raspberry Pi,” Jakarta, Jul. 2023. Accessed: Dec. 25, 2023. [Online]. Available: https://repository.pnj.ac.id/id/eprint/12477/1/PEMBUKAAN%20sd%20BAB%20I_Meutia%20Tri%20Mulyani.pdf

O. E. Olorunshola, M. E. Irhebhude, and A. E. Evwiekpaefe, “A Comparative Study of YOLOv5 and YOLOv7 Object Detection Algorithms 1*,” Journal of Computing and Social Informatics, vol. 2, no. 1, p. 1, 2023.

U. P. Sanjaya, Z. Alawi, A. R. Zayn, and G. Dirgantara, “Optimasi Convolutional Neural Network dengan Standard Deviasi untuk Klasifikasi Pneumonia pada Citra X-rays Paru,” Generation Journal, vol. 7, no. 3, pp. 40–47, Oct. 2023, doi: https://doi.org/10.29407/gj.v7i3.20183.

Z. Soleimanitaleb, M. A. Keyvanrad, and A. Jafari, “Object Tracking Methods:A Review,” in 2019 9th International Conference on Computer and Knowledge Engineering (ICCKE), IEEE, Oct. 2019, pp. 282–288. doi: 10.1109/ICCKE48569.2019.8964761.

Z. Q. Zhao, P. Zheng, S. T. Xu, and X. Wu, “Object Detection with Deep Learning: A Review,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 11. Institute of Electrical and Electronics Engineers Inc., pp. 3212–3232, Nov. 01, 2019. doi: 10.1109/TNNLS.2018.2876865.

O. E. Olorunshola, M. E. Irhebhude, and A. E. Evwiekpaefe, “A Comparative Study of YOLOv5 and YOLOv7 Object Detection Algorithms,” Journal of Computing and Social Informatics, vol. 2, no. 1, pp. 1–12, Feb. 2023, doi: 10.33736/jcsi.5070.2023.

D. Dlužnevskij, P. Stefanovč, and S. Ramanauskaite, “Investigation of YOLOv5 efficiency in IPhone supported systems,” Baltic Journal of Modern Computing, vol. 9, no. 3, pp. 333–344, 2021, doi: 10.22364/bjmc.2021.9.3.07.

M. Hasnain, M. F. Pasha, I. Ghani, M. Imran, M. Y. Alzahrani, and R. Budiarto, “Evaluating Trust Prediction and Confusion Matrix Measures for Web Services Ranking,” IEEE Access, vol. 8, pp. 90847–90861, May 2020, doi: 10.1109/ACCESS.2020.2994222.

R. Ilahi, F. Bimantoro, R. Dwiyansaputra, and R. Farinda, “Classification of Pringgasela Typical Songket Using Multi Texton Co-occurrence Descriptor and K-Nearest Neighbor,” in Proceedings of the First Mandalika International Multi-Conference on Science and Engineering 2022, MIMSE 2022 (Informatics and Computer Science), Dordrecht: Atlantis Press International BV, 2022, pp. 352–366. doi: 10.2991/978-94-6463-084-8_30.

G. Tripathi and R. Kumar, “Early Prediction of Diabetes Mellitus Using Machine Learning,” in 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), IEEE, Jun. 2020, pp. 1009–1014. doi: 10.1109/ICRITO48877.2020.9197832.

L. Farokhah, “IMPLEMENTASI K-NEAREST NEIGHBOR UNTUK KLASIFIKASI BUNGA DENGAN EKSTRAKSI FITUR WARNA RGB,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 7, no. 6, pp. 1129–1135, 2019, doi: 10.25126/jtiik.202072608.

J. Lee and K. il Hwang, “YOLO with adaptive frame control for real-time object detection applications,” Multimed Tools Appl, vol. 81, no. 25, pp. 36375–36396, Oct. 2022, doi: 10.1007/s11042-021-11480-0.

M. Durve, F. Bonaccorso, A. Montessori, M. Lauricella, A. Tiribocchi, and S. Succi, “Tracking droplets in soft granular flows with deep learning techniques,” The European Physical Journal Plus, vol. 136, no. 8, p. 864, Aug. 2021, doi: 10.1140/epjp/s13360-021-01849-3.

D. Gros et al., “Anaphora Resolution,” International Journal of Information Retrieval Research, vol. 8, no. 3, pp. 33–45, Jul. 2018, doi: 10.4018/IJIRR.2018070103.

M. Zhu, “Recall, Precision and Average Precision,” Canada, Aug. 2004. Accessed: Sep. 14, 2023. [Online]. Available: https://www.researchgate.net/publication/228874142_Recall_precision_and_average_precision

Downloads

Published

2024-01-13

How to Cite

Bimantoro, F., Wijaya, I. G. P. S., & Aohana, M. R. (2024). Pendeteksian Kecurangan Ujian Melalui CCTV Menggunakan Algoritma YOLOv5: Exam Cheating Detection Through CCTV Using YOLOv5 Algorithm. Seminar Nasional Teknologi &Amp; Sains, 3(1), 109–117. https://doi.org/10.29407/stains.v3i1.4360