Klasifikasi Tumor Otak Menggunakan CNN Dengan Arsitektur Resnet50
DOI:
https://doi.org/10.29407/stains.v3i1.4357Keywords:
brain tumor, CNN, classification, , MRI images, ResNet-50Abstract
Penelitian ini mengusulkan penggunaan Convolutional Neural Network (CNN) dengan model ResNet-50 untuk mengklasifikasikan jenis tumor otak berdasarkan gambar MRI. Dataset terdiri dari empat kelas: Glioma, Hipofisis, Meningioma, dan Normal. Metode penelitian melibatkan pengumpulan data, preprocessing, desain arsitektur CNN, pelatihan model, dan evaluasi. Hasil pengujian menunjukkan bahwa model mampu mengklasifikasikan jenis tumor otak dengan akurasi yang memuaskan. Penerapan ResNet-50 meningkatkan kinerja dengan mengatasi masalah hilangnya gradien. Berdasarkan penelitian tersebut, klasifikasi tumor otak menggunakan CNN dengan arsitektur Resnet50 dapat mendukung deteksi dini tumor otak untuk meningkatkan akurasi diagnostik. Pada penelitian ini akurasi terbaik diperoleh sebesar 96% pada percobaan epoch ke-11.
Downloads
References
R. Andre, B. Wahyu, and R. Purbaningtyas, “Klasifikasi Tumor Otak Menggunakan Convolutional Neural Network Dengan Arsitektur Efficientnet-B3,” J. IT, vol. 11, no. 3, pp. 55–59, 2021, [Online]. Available: https://jurnal.umj.ac.id/index.php/just-it/index
I. B. L. M. Suta, R. S. Hartati, and Y. Divayana, “Diagnosa Tumor Otak Berdasarkan Citra MRI (Magnetic Resonance Imaging),” Maj. Ilm. Teknol. Elektro, vol. 18, no. 2, 2019, doi: 10.24843/mite.2019.v18i02.p01.
M. N. Winnarto, M. Mailasari, and A. Purnamawati, “Klasifikasi Jenis Tumor Otak Menggunakan Arsitekture Mobilenet V2,” J. SIMETRIS, vol. 13, no. 2, pp. 1–12, 2022.
M. A. Hanin, R. Patmasari, and R. Y. Nur, “Sistem Klasifikasi Penyakit Kulit Menggunakan Convolutional Neural Network (CNN),” e-Proceeding Eng., vol. 8, no. 1, pp. 273–281, 2021.
N. D. Miranda, L. Novamizanti, and S. Rizal, “Convolutional Neural Network Pada Klasifikasi Sidik Jari Menggunakan Resnet-50,” J. Teknik. Informatika., vol. 1, no. 2, pp. 61–68, 2020, doi: 10.20884/1.jutif.2020.1.2.18.
A. Ridhovan and A. Suharso, “Penerapan Metode Residual Network (Resnet) Dalam Klasifikasi Penyakit Pada Daun Gandum,” JIPI (Jurnal Ilmiah. Penelitian. dan Pembelajaran Informatika., vol. 7, no. 1, pp. 58–65, 2022, doi: 10.29100/jipi.v7i1.2410.
A. Nada Nafisa, E. Nia Devina Br Purba, F. Aulia Alfarisi Harahap, N. Adawiyah Putri, I. Komputer, and F. Matematika dan Ilmu Pengetahuan Alam, “Implementasi Algoritma Convolutional Neural Network Arsitektur Model Mobilenetv2 Dalam Klasifikasi Penyakit Tumor Otak Glioma, Pituitary Dan Meningioma,” J. Teknol. Informasi, Komputer, danApl.(JTIKA),vol.5,no.1,pp.53–61,2023.
M. M. Badža and M. C. Barjaktarović, “Classification of brain tumors from mri images using a convolutional neural network,” Applied Sciences (Switzerland), vol. 10, no. 6, Mar. 2020, doi: 10.3390/app10061999.
Faiz Nashrullah, Suryo Adhi Wibowo, and Gelar Budiman, “The Investigation of Epoch Parameters in ResNet-50 Architecture for Pornographic Classification,” J. Comput. Electron. Telecommun., vol. 1, no. 1, pp. 1–8, 2020, doi: 10.52435/complete.v1i1.51.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Rosa Lina, Mohammad Liyananta Septipalan, Fitri Bimantoro, Nurun Latifah, Muhammad Shata’ Hibrizi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License