Analisis Review Siswa Selama Pembelajaran pada Masa Pandemi Menggunakan Metode Topic Modelling LDA
DOI:
https://doi.org/10.29407/stains.v1i1.1538Keywords:
Topic Modelling, Latent Dirichlet Allocation, LDA, Text Mining, e-learningAbstract
Dalam meningkatkan kualitas pendidikan yang semakin baik sekolah dapat mendapatkan masukan dari berbagai pihak baik itu orang tua murid, guru dan siswa. Sekolah dapat memanfaatkan e-leraning dalam mengumpulkan pendapat siswa di sekolah. Namun dari hasil pendapat siswa sekolah masih kesulitan dalam menyimpulkan topi kapa yang paling banyak di bahas oleh siswa. Dalam penelitian ini penulis mencoba untuk melakukan pemodelan topik dengan menggunakan LDA untuk studi kasus di SMK Negeri 1 ngasem dalam proses pembelajaran selama pandemic covid-19. Dari hasil pengambilan dataset review pendapat siswa terdapat 1619 review yang kemudian dilakukan pemodelan topik dengan hasil bahwa topik “pembelajaran” yang banyak di review oleh siswa
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Ari Eka Prasetiyanto, Kusrini Kusrini, Anggit Dwi Hartanto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License





