Abstract
Menjaga kualitas daging ayam sangat penting untuk keamanan pangan dan kesehatan konsumen. Metode inspeksi tradisional seringkali subjektif dan tidak efisien. Studi ini mengusulkan sistem deteksi kualitas daging ayam otomatis yang memanfaatkan algoritma deteksi objek YOLOv8 yang terintegrasi ke dalam aplikasi web berbasis Flask. Dataset terdiri dari tiga kategori yaitu ayam segar, ayam tiren, dan none. Model dilatih menggunakan Google Colaboratory dan dievaluasi melalui metrik presisi, recall, dan mean Average Precision (mAP). Model YOLOv8 menunjukkan kinerja tinggi, dengan presisi 0,975, recall 0,92, mean Average Precision (mAP@0.5) 0,972, dan mean Precision (mAP@0.5:0.95) 0,84. Sistem yang dikembangkan terbukti mampu mendeteksi kualitas daging ayam secara akurat dan efisien. Inovasi ini diharapkan dapat meningkatkan keamanan pangan serta membantu konsumen dan pelaku industri dalam memastikan mutu produk secara lebih objektif dan praktis.
References
[1] R. N. Sari, Murniyati, and L. Azis, “PENILAIAN STATUS GIZI IBU MENYUSUI EKSKLUSIF DENGAN METODE 24 H RECALL DI KECAMATAN SUMBAWA,” J. TAMBORA, vol. 7, no. 2, pp. 8–17, Jul. 2023, doi: 10.36761/jt.v7i2.2968.
[2] M. Lima, R. Costa, I. Rodrigues, J. Lameiras, and G. Botelho, “A Narrative Review of Alternative Protein Sources: Highlights on Meat, Fish, Egg and Dairy Analogues,” Foods, vol. 11, no. 14, p. 2053, Jul. 2022, doi: 10.3390/foods11142053.
[3] M. M. Wulandari, B. K. H. Jati, and ..., “Edukasi Konsumsi Protein Hewan dan Pencegahan Stunting: Upaya Peningkatan Kesejahteraan Komunitas Desa Cipetung, Kabupaten Brebes,” J. Pengabdi. …, vol. 4, no. 4, pp. 4003–4011, 2023, [Online]. Available: http://ejournal.sisfokomtek.org/index.php/jpkm/article/view/1966%0Ahttps://ejournal.sisfokomtek.org/index.php/jpkm/article/download/1966/1372
[4] M. H. Haque et al., “Sustainable Antibiotic-Free Broiler Meat Production: Current Trends, Challenges, and Possibilities in a Developing Country Perspective,” Biology (Basel)., vol. 9, no. 11, p. 411, Nov. 2020, doi: 10.3390/biology9110411.
[5] W. He, P. Li, and G. Wu, “Amino Acid Nutrition and Metabolism in Chickens,” 2021, pp. 109–131. doi: 10.1007/978-3-030-54462-1_7.
[6] G. Liu and W. K. Kim, “The Functional Roles of Methionine and Arginine in Intestinal and Bone Health of Poultry: Review,” Animals, vol. 13, no. 18, p. 2949, Sep. 2023, doi: 10.3390/ani13182949.
[7] K. Md., R. I. Md., R. Ananya, H. Md. Mohasin, Z. Md. Ashrafuzzaman, and P. Rashida, “Effect of Poor Post-Slaughter Handling on Physicochemical and Microbial Quality of Fresh Broiler in Bangladesh,” Adv. Food Prod. Process. Nutr., vol. 2, no. 1, pp. 008–016, Aug. 2024, doi: 10.17352/afppn.000003.
[8] P. Kumar, A. K. Verma, P. Umaraw, N. Mehta, and A. Q. Sazili, “Processing and preparation of slaughtered poultry,” in Postharvest and Postmortem Processing of Raw Food Materials, Elsevier, 2022, pp. 281–314. doi: 10.1016/B978-0-12-818572-8.00006-1.
[9] S. Barbut and E. M. Leishman, “Quality and Processability of Modern Poultry Meat,” Animals, vol. 12, no. 20, p. 2766, Oct. 2022, doi: 10.3390/ani12202766.
[10] M. Grzybowska-Brzezińska, J. K. Banach, and M. Grzywińska-Rąpca, “Shaping Poultry Meat Quality Attributes in the Context of Consumer Expectations and Preferences—A Case Study of Poland,” Foods, vol. 12, no. 14, p. 2694, Jul. 2023, doi: 10.3390/foods12142694.
[11] W. Katiyo, H. L. de Kock, R. Coorey, and E. M. Buys, “Sensory implications of chicken meat spoilage in relation to microbial and physicochemical characteristics during refrigerated storage,” LWT, vol. 128, p. 109468, Jun. 2020, doi: 10.1016/j.lwt.2020.109468.
[12] K. Jot Singh, D. Singh Kapoor, K. Thakur, A. Sharma, and X.-Z. Gao, “Computer-Vision Based Object Detection and Recognition for Service Robot in Indoor Environment,” Comput. Mater. Contin., vol. 72, no. 1, pp. 197–213, 2022, doi: 10.32604/cmc.2022.022989.
[13] A. Morar et al., “A Comprehensive Survey of Indoor Localization Methods Based on Computer Vision,” Sensors, vol. 20, no. 9, p. 2641, May 2020, doi: 10.3390/s20092641.
[14] Calvin, G. B. Putra, and E. Prakasa, “Classification of Chicken Meat Freshness using Convolutional Neural Network Algorithms,” 2020 Int. Conf. Innov. Intell. Informatics, Comput. Technol. 3ICT 2020, pp. 3–8, 2020, doi: 10.1109/3ICT51146.2020.9312018.
[15] C. A. Rilia, “Classification of Chicken Meat Freshness Using Support Vector Machine and Hue Saturation Intensity,” vol. 11, no. 2, pp. 134–142, 2025.
[16] A. Nakrosis et al., “Towards Early Poultry Health Prediction through Non-Invasive and Computer Vision-Based Dropping Classification,” Animals, vol. 13, no. 19, p. 3041, Sep. 2023, doi: 10.3390/ani13193041.
[17] A. Kumar, Z. J. Zhang, and H. Lyu, “Object detection in real time based on improved single shot multi-box detector algorithm,” EURASIP J. Wirel. Commun. Netw., vol. 2020, no. 1, 204, Dec. 2020, doi: 10.1186/s13638-020-01826-x.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2025 Bagus Dwi Prasetya, Ratih Kumalasari Niswatin, Intan Nur Farida
