Perbandingan Model Klasifikasi untuk Deteksi  Berita Hoaks Menggunakan LSTM, Naive Bayes, Random Forest, K-Means, dan Word2Vec
PDF

Keywords

deteksi berita hoaks
klasifikasi teks
word2vec

How to Cite

Perbandingan Model Klasifikasi untuk Deteksi  Berita Hoaks Menggunakan LSTM, Naive Bayes, Random Forest, K-Means, dan Word2Vec. (2025). Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi), 9(1), 810-820. https://doi.org/10.29407/qmq3j747

Abstract

Penyebaran berita hoaks melalui media daring menjadi ancaman serius bagi masyarakat digital. Penelitian ini bertujuan untuk membandingkan performa berbagai model klasifikasi dalam mendeteksi berita hoaks, yaitu Long Short-Term Memory (LSTM), Naive Bayes, Random Forest, dan K-Means Clustering, dengan pemanfaatan Word2Vec sebagai metode representasi vektor kata. Dataset yang digunakan adalah kumpulan berita hoaks dan fakta yang telah tersedia secara publik. Hasil eksperimen menunjukkan bahwa LSTM memiliki akurasi tertinggi dalam mendeteksi berita hoaks, diikuti oleh Random Forest dan Naive Bayes, sedangkan K-Means kurang akurat karena merupakan metode unsupervised. Penelitian ini memberikan kontribusi terhadap pengembangan sistem deteksi berita hoaks otomatis yang andal.

PDF

References

[1] Allcott, H.and Gentzkow, M., "Sosial media and fake news in the 2016 election," Journal of Economic Perspectives, vol. 31, no. 2, pp. 211-236, 2017.

[2] Jurafsky, D.and Martin, J.H., Speech and Language Processing, Stanford: Stanford University, 2023.

[3] Goldberg, Y., "A Primer On Neural Network Models for Natural Language Processing," Journal of Artificial Intelligence Research, vol. 57, pp. 345-420, 2016.

[4] Ajao,A., Bhowmik, D,and Zargari, S., "Fake news detection using deep learning models: A case study on COVID-19," Symmetry, vol. 13, no. 6, p. 973, 2021.

[5] Wang, S., Angarita, H. and Ren, T., "Fake news detection using support vector machine with K-means SMOTE and TF-IDF," Expert Systems with Applications, vol. 169, p. 114171, 2021.

[6] Sharma, R., Nigam, S. and Jain, B., "A survey on fake news detection using NLP techniques," Procedia Computer Science, vol. 189, pp. 43-52, 2021.

[7] Kaliyar, M., Goswami, A. and Narang, P., "DeepFake: Improving fake news detection using tensor decomposition-based deep neural network," Journal of Intelligent & Fuzzy Systems, vol. 38, no. 3, pp. 3051-3061, 2020.

[8] Ruchansky, N., Seo, S. and Liu, Y., "CSI: A hybrid deep model for fake news detection," in Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 2017.

[9] Thorne, J. and Vlachos, A., "Automated fact checking: Task formulations, methods and future directions," in Proceedings of the 27th International Conference on Computational Linguistics (COLING), 2018.

[10] Horne, A. and Adali, S., "This just in: Fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news," 2017.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2025 Laurenhia Salsabella Afrinza, Fariez Frimansyah Frimansyah, Shella Ayu Ardita, Vera Angelita Febriani