Optimasi Model Prediksi Kesuksesan Startup Menggunakan StandartScaler Tranform
DOI:
https://doi.org/10.29407/stains.v3i1.4340Keywords:
Kesuksesan Startup, Deep Neural Networks, StandartScaler Transform, Optimasi, PrediksiAbstract
Pertumbuhan pesat startup di era teknologi modern menimbulkan tantangan kompleks dalam memprediksi kesuksesan suatu startup. Berdasarkan data yang diperoleh, 90 dari 100 startup gagal mencapai tingkat pendanaan yang diinginkan. Keberhasilan sebuah startup tidak hanya mencerminkan prestasi bisnis individu tetapi juga memiliki dampak yang luas pada dinamika ekonomi global. Oleh karena itu, perlu dikembangkan model prediksi yang handal sebagai dasar pengambilan keputusan yang efektif dalam pengembangan startup. Untuk mengatasi masalah ini, penelitian ini menggunakan integrasi Deep Neural Networks dengan StandartScaler Transform untuk mengoptimalkan model prediksi kesuksesan startup. StandartScaler Transform digunakan untuk menormalkan distribusi data sebelum diterapkan pada Deep Neural Networks. Hasil eksperimen pada model prediksi kesuksesan startup menunjukkan peningkatan akurasi sebesar 35,25% pada tahap training, dan peningkatan tambahan sebesar 36,95% pada tahap testing. Model prediksi kesuksesan startup yang dibangun berhasil mengatasi masalah overfitting/underfitting, sehingga menjadikannya sebagai dasar untuk pengembangan aplikasi prediksi kesuksesan startup.
Downloads
References
Y. Birkman, “Hello, Startup: A Programmer's Guide to Building Products, Technologies, and Teams,” O'Reilly Media, Inc., 2015.
Goldenia, et al., “Implementasi Algoritma Support Vector Machine dalam Memprediksi Keberhasilan Suatu Startup Berdasarkan Status Akuisisi,” Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA), 2021.
E. Ramalakshmi, and S. R. Kamidi, “Predictions for Startups”, International Journal of Engineering & Technology, vol. 7, 2018.
A. P. Adhitya, K. Ainiyah, and K. F. H. Holle, “Analisis Perbandingan Algoritma Decision Tree, kNN, dan Naive Bayes untuk Prediksi Kesuksesan Start-up”, JISKA, vol. 6, No. 3, Pp. 178 – 188, 2021.
M. Bangdiwala, Y. Mehta, S. Agrawal and S. Ghane, “Predicting Success Rate of Startups using Machine Learning Algorithms,” 2022 2nd Asian Conference on Innovation in Technology (ASIANCON), Ravet, India, 2022, pp. 1-6, doi: 10.1109/ASIANCON55314.2022.9908921.
G. Ross, S. Das, D. Sciro, and H. Raza, “CapitalVX: A machine learning model for startup selection and exit prediction,” The Journal of Finance and Data Science, vol. 7, Pp. 94-114, 2021.
W. S. Lestari & A. Halim, “Prediksi Kesuksesan Startup Menggunakan Deep Neural Network,” Jurnal SIFO Mikroskil, vol. 23, no. 2, 2022.
scikit-learn developers. (2023, Des) Compare the effect of different scalers on data with outliers [online].Available:https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html#standardscaler
T. D. K. Thara, B. G. P. Sudha and F. Xiong, “Auto-detection of Epileptic Seizure Events Using Deep Neural Network with Different Feature Scaling Techniques,” Pattern Recognition Letters, 2019.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Wulan Sri Lestari

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License





