Prediksi Harga Saham Tesla Menggunakan Algoritma Neural Prophet Berbasis Mobile
DOI:
https://doi.org/10.29407/stains.v2i1.2873Abstract
Pasar saham merupakan indikator ekonomi yang penting. Dalam penelitian dan analisis, keakuratan prediksi dari berbagai harga saham sangat aktif dan ramai. Hasil prediksi dari suatu harga saham dapat membantu untuk dijadikan bahan pertimbangan sebelum membeli atau menjual saham. Penelitian ini bertujuan untuk membangun sebuah aplikasi prediksi harga saham Tesla menggunakan metode Neural Prophet berbasis Android. Metode Neural Prophet merupakan sebuah evolusi dari metode Prophet yang dibuat oleh Facebook. Hasil prediksi dari harga saham Tesla mendapatkan nilai MAD sebesar 31,29 dan akurasi MAPE sebesar 18,37%, sedangkan jika menggunakan metode Facebook Prophet mendapatkan hasil nilai MAD sebesar 106,13 dan akurasi MAPE sebesar 25,44%. Sehingga menyimpulkan bahwa metode Neural Prophet lebih baik daripada Facebook Prophet untuk memprediksi harga saham Tesla.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Ahmad Fitra Hamdani, Samsudin, Adam Julian Saputra

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License





