Dirac Equation for Posch-Teller Potential in Radial Section Symmetry Spin Case using Asymptotic Iteration Method
PDF

Keywords

Dirac Equation
Potential Posch-Teller
Asymptotic Iteration Method

How to Cite

Dirac Equation for Posch-Teller Potential in Radial Section Symmetry Spin Case using Asymptotic Iteration Method. (2022). Proceedings of the International Seminar on Business, Education and Science, 1(1), 88-97. https://doi.org/10.29407/int.v1i1.2658

Abstract

This study aims to determine the value of the energy spectrum and wave function for the Posch-Teller potential in the case of radial spin symmetry. The solution to the Dirac equation using the asymptotic iteration method is done by reducing the second-order differential equation to a hypergeometric type differential equation by means of variable substitution to obtain a relativistic energy equation. The relativistic energy of the system is calculated using matlab software. This study is limited to the case of spin symmetry in the radial section.

PDF

References

Alam, Y., Suparmi, Cari, & Anwar, F. (2016). Analysis of D Dimensional Dirac equation for q-deformed Posch-Teller combined with q-deformed trigonometric Manning Rosen Non-Central potential using Asymptotic Iteration Method (AIM). Journal of Physics: Conference Series, 776(1). https://doi.org/10.1088/1742-6596/776/1/012082

Alam, Yuniar. (2015). Solusi Persamaan Dirac Bagian Radial Pada Kasus Pseudospin Simetri Untuk Potensial Posch-Teller Hiperbolik Terdeformasi-Q Menggunakan Metode Iterasi Asimtotik. Prosiding Seminar Nasional Pendidikan Sains, (5), 2015–2601.

Alvarez-Castillo, D. E. (2008). Exactly Solvable Potentials and Romanovski Polynomials in Quantum Mechanics. (March).

Andrade, F. M., Silva, E. O., Ferreira, M. M., & Rodrigues, E. C. (2014). On the κ-Dirac oscillator revisited. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 731, 327–330. https://doi.org/10.1016/j.physletb.2014.02.054

Chen, Y. (2019). The Dirac operator on locally reducible Riemannian manifolds. Journal of Geometry and Physics, 139(11301202), 17–24. https://doi.org/10.1016/j.geomphys.2019.01.004

Deta, U. A., & Suparmi. (2015). The properties of Q-deformed hyperbolic and trigonometric functions in quantum deformation. AIP Conference Proceedings, 1677. https://doi.org/10.1063/1.4930629

Ding, S., & Liu, B. (2015). Dirac-harmonic equations for differential forms. Nonlinear Analysis, Theory, Methods and Applications, 122, 43–57. https://doi.org/10.1016/j.na.2015.03.021

Guzmán Adán, A., Orelma, H., & Sommen, F. (2019). Hypermonogenic solutions and plane waves of the Dirac operator in Rp×Rq. Applied Mathematics and Computation, 346, 1–14. https://doi.org/10.1016/j.amc.2018.09.058

Husein, A. S. (2014). Review Asymtotic Iteration Method : Pendekatan yang Powerful untuk Analisis Perambatan Gelombang Elektromagnetik dalam Lapisan Dielektrik Tak Homogen. 1–30.

Ikhdair, S. M., & Hamzavi, M. (2012). Relativistic New Yukawa-Like Potential and Tensor Coupling. Few-Body Systems, 53(3–4), 487–498. https://doi.org/10.1007/s00601-012-0475-2

Ikhdair, S. M., & Hamzavi, M. (2013). Approximate relativistic solutions for a new ring-shaped Hulthén potential. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 68 A(3–4), 279–290. https://doi.org/10.5560/ZNA.2012-0109

Ikhdair, S. M., Hamzavi, M., & Rajabi, A. A. (2013). Relativistic bound states in the presence of spherically ring-shaped q-deformed woods-saxon potential with arbitrary l-states. International Journal of Modern Physics E, 22(3), 1–16. https://doi.org/10.1142/S0218301313500158

Ikhdair, S. M., & Sever, R. (2007). Exact solutions of the radial Schrödinger equation for some physical potentials. Central European Journal of Physics, 5(4), 516–527. https://doi.org/10.2478/s11534-007-0022-9

Ikhdair, S., & Sever, R. (2007). Exact polynomial eigensolutions of the Schrödinger equation for the pseudoharmonic potential. Journal of Molecular Structure: THEOCHEM, 806(1–3), 155–158. https://doi.org/10.1016/j.theochem.2006.11.019

Ikot, A. N., Awoga, O. A., & Antia, A. D. (2013). Bound state solutions of d-dimensional Schrödinger equation with Eckart potential plus modified deformed Hylleraas potential. Chinese Physics B, 22(2). https://doi.org/10.1088/1674-1056/22/2/020304

Meyur, S. (2011). Bound State Energy Level for Three Solvable Potentials. 38, 347–356.

Potential, M. (1929). Wavefunctions of the Morse Potential. 1–6.

Pramono, S., Suparmi, A., & Cari, C. (2016). Relativistic Energy Analysis of Five-Dimensional q -Deformed Radial Rosen-Morse Potential Combined with q -Deformed Trigonometric Scarf Noncentral Potential Using Asymptotic Iteration Method. Advances in High Energy Physics, 2016. https://doi.org/10.1155/2016/7910341

Pratiwi, B. N., Suparmi, A., Cari, C., & Husein, A. S. (2017). Asymptotic iteration method for the modified poschl-teller potential and trigonometric Scarf II non-central potential in the Dirac equation spin symmetry. Pramana - Journal of Physics, 88(2). https://doi.org/10.1007/s12043-016-1326-3

Salvat, F., & Fernández-Varea, J. M. (2019). RADIAL: A Fortran subroutine package for the solution of the radial Schrödinger and Dirac wave equations. Computer Physics Communications, 240, 165–177. https://doi.org/10.1016/j.cpc.2019.02.011

Sari, R. A., Suparmi, A., & Cari, C. (2015). Analisis Persamaan Dirac untuk Potensial Eckart pada Kasus Spin Simetri Bagian Radial menggunakan Metode Iterasi Asimtotik. (April), 150–153.

Soylu, A., Bayrak, O., & Boztosun, I. (2008). Exact solutions of Klein-Gordon equation with scalar and vector Rosen-Morse-type potentials. Chinese Physics Letters, 25(8), 2754–2757. https://doi.org/10.1088/0256-307X/25/8/006

Suparmi, A. (2012). Approximate Solution of Schrodinger Equation for Modified Poschl-Teller plus Trigonometric Rosen-Morse Non-Central Potentials in Terms of Finite Romanovski Polynomials. IOSR Journal of Applied Physics, 2(2), 43–51. https://doi.org/10.9790/4861-0224351

Suparmi, A. (2013). Energy Spectra and Wave Function Analysis of q-Deformed Modified Poschl-Teller and Hyperbolic Scarf II Potentials Using NU Method and a Mapping Method. Advances in Physics Theories and Applications, 16(2005), 64–75. https://doi.org/10.7176/apta-16-8

Taşkın, F. (2009). Approximate solutions of the Schrödinger equation for the Rosen-Morse potential including centrifugal term. International Journal of Theoretical Physics, 48(9), 2692–2697. https://doi.org/10.1007/s10773-009-0059-1

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2022 Yuniar Alam, Yuanita Amalia Hariyanto

Downloads

Download data is not yet available.