Dirac Equation for Posch-Teller Potential in Radial Section Symmetry Spin Case using Asymptotic Iteration Method
PDF

Keywords

Dirac Equation
Potential Posch-Teller
Asymptotic Iteration Method

How to Cite

Alam, Y., & Hariyanto, Y. A. . (2022). Dirac Equation for Posch-Teller Potential in Radial Section Symmetry Spin Case using Asymptotic Iteration Method. Proceedings of the International Seminar on Business, Education and Science, 1(1), 88–97. https://doi.org/10.29407/int.v1i1.2658

Abstract

This study aims to determine the value of the energy spectrum and wave function for the Posch-Teller potential in the case of radial spin symmetry. The solution to the Dirac equation using the asymptotic iteration method is done by reducing the second-order differential equation to a hypergeometric type differential equation by means of variable substitution to obtain a relativistic energy equation. The relativistic energy of the system is calculated using matlab software. This study is limited to the case of spin symmetry in the radial section.

https://doi.org/10.29407/int.v1i1.2658
PDF

References

Alam, Y., Suparmi, Cari, & Anwar, F. (2016). Analysis of D Dimensional Dirac equation for q-deformed Posch-Teller combined with q-deformed trigonometric Manning Rosen Non-Central potential using Asymptotic Iteration Method (AIM). Journal of Physics: Conference Series, 776(1). https://doi.org/10.1088/1742-6596/776/1/012082

Alam, Yuniar. (2015). Solusi Persamaan Dirac Bagian Radial Pada Kasus Pseudospin Simetri Untuk Potensial Posch-Teller Hiperbolik Terdeformasi-Q Menggunakan Metode Iterasi Asimtotik. Prosiding Seminar Nasional Pendidikan Sains, (5), 2015–2601.

Alvarez-Castillo, D. E. (2008). Exactly Solvable Potentials and Romanovski Polynomials in Quantum Mechanics. (March).

Andrade, F. M., Silva, E. O., Ferreira, M. M., & Rodrigues, E. C. (2014). On the κ-Dirac oscillator revisited. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 731, 327–330. https://doi.org/10.1016/j.physletb.2014.02.054

Chen, Y. (2019). The Dirac operator on locally reducible Riemannian manifolds. Journal of Geometry and Physics, 139(11301202), 17–24. https://doi.org/10.1016/j.geomphys.2019.01.004

Deta, U. A., & Suparmi. (2015). The properties of Q-deformed hyperbolic and trigonometric functions in quantum deformation. AIP Conference Proceedings, 1677. https://doi.org/10.1063/1.4930629

Ding, S., & Liu, B. (2015). Dirac-harmonic equations for differential forms. Nonlinear Analysis, Theory, Methods and Applications, 122, 43–57. https://doi.org/10.1016/j.na.2015.03.021

Guzmán Adán, A., Orelma, H., & Sommen, F. (2019). Hypermonogenic solutions and plane waves of the Dirac operator in Rp×Rq. Applied Mathematics and Computation, 346, 1–14. https://doi.org/10.1016/j.amc.2018.09.058

Husein, A. S. (2014). Review Asymtotic Iteration Method : Pendekatan yang Powerful untuk Analisis Perambatan Gelombang Elektromagnetik dalam Lapisan Dielektrik Tak Homogen. 1–30.

Ikhdair, S. M., & Hamzavi, M. (2012). Relativistic New Yukawa-Like Potential and Tensor Coupling. Few-Body Systems, 53(3–4), 487–498. https://doi.org/10.1007/s00601-012-0475-2

Ikhdair, S. M., & Hamzavi, M. (2013). Approximate relativistic solutions for a new ring-shaped Hulthén potential. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 68 A(3–4), 279–290. https://doi.org/10.5560/ZNA.2012-0109

Ikhdair, S. M., Hamzavi, M., & Rajabi, A. A. (2013). Relativistic bound states in the presence of spherically ring-shaped q-deformed woods-saxon potential with arbitrary l-states. International Journal of Modern Physics E, 22(3), 1–16. https://doi.org/10.1142/S0218301313500158

Ikhdair, S. M., & Sever, R. (2007). Exact solutions of the radial Schrödinger equation for some physical potentials. Central European Journal of Physics, 5(4), 516–527. https://doi.org/10.2478/s11534-007-0022-9

Ikhdair, S., & Sever, R. (2007). Exact polynomial eigensolutions of the Schrödinger equation for the pseudoharmonic potential. Journal of Molecular Structure: THEOCHEM, 806(1–3), 155–158. https://doi.org/10.1016/j.theochem.2006.11.019

Ikot, A. N., Awoga, O. A., & Antia, A. D. (2013). Bound state solutions of d-dimensional Schrödinger equation with Eckart potential plus modified deformed Hylleraas potential. Chinese Physics B, 22(2). https://doi.org/10.1088/1674-1056/22/2/020304

Meyur, S. (2011). Bound State Energy Level for Three Solvable Potentials. 38, 347–356.

Potential, M. (1929). Wavefunctions of the Morse Potential. 1–6.

Pramono, S., Suparmi, A., & Cari, C. (2016). Relativistic Energy Analysis of Five-Dimensional q -Deformed Radial Rosen-Morse Potential Combined with q -Deformed Trigonometric Scarf Noncentral Potential Using Asymptotic Iteration Method. Advances in High Energy Physics, 2016. https://doi.org/10.1155/2016/7910341

Pratiwi, B. N., Suparmi, A., Cari, C., & Husein, A. S. (2017). Asymptotic iteration method for the modified poschl-teller potential and trigonometric Scarf II non-central potential in the Dirac equation spin symmetry. Pramana - Journal of Physics, 88(2). https://doi.org/10.1007/s12043-016-1326-3

Salvat, F., & Fernández-Varea, J. M. (2019). RADIAL: A Fortran subroutine package for the solution of the radial Schrödinger and Dirac wave equations. Computer Physics Communications, 240, 165–177. https://doi.org/10.1016/j.cpc.2019.02.011

Sari, R. A., Suparmi, A., & Cari, C. (2015). Analisis Persamaan Dirac untuk Potensial Eckart pada Kasus Spin Simetri Bagian Radial menggunakan Metode Iterasi Asimtotik. (April), 150–153.

Soylu, A., Bayrak, O., & Boztosun, I. (2008). Exact solutions of Klein-Gordon equation with scalar and vector Rosen-Morse-type potentials. Chinese Physics Letters, 25(8), 2754–2757. https://doi.org/10.1088/0256-307X/25/8/006

Suparmi, A. (2012). Approximate Solution of Schrodinger Equation for Modified Poschl-Teller plus Trigonometric Rosen-Morse Non-Central Potentials in Terms of Finite Romanovski Polynomials. IOSR Journal of Applied Physics, 2(2), 43–51. https://doi.org/10.9790/4861-0224351

Suparmi, A. (2013). Energy Spectra and Wave Function Analysis of q-Deformed Modified Poschl-Teller and Hyperbolic Scarf II Potentials Using NU Method and a Mapping Method. Advances in Physics Theories and Applications, 16(2005), 64–75. https://doi.org/10.7176/apta-16-8

Taşkın, F. (2009). Approximate solutions of the Schrödinger equation for the Rosen-Morse potential including centrifugal term. International Journal of Theoretical Physics, 48(9), 2692–2697. https://doi.org/10.1007/s10773-009-0059-1

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2022 Yuniar Alam, Yuanita Amalia Hariyanto

Downloads

Download data is not yet available.