Sentiment Analysis of iPusnas Application Reviews on Google Play Using Support Vector Machine
PDF

Keywords

sentiment analysis
iPusnas
Support Vector Machine

How to Cite

Lestari, F. S. ., Harliana, H., Huda, M. M. ., & Prabowo, T. . (2022). Sentiment Analysis of iPusnas Application Reviews on Google Play Using Support Vector Machine. Proceedings of the International Seminar on Business, Education and Science, 1(1), 178–188. https://doi.org/10.29407/int.v1i1.2656

Abstract

The iPusnas application is a digital library platform that allows users to borrow and read books online, free, and legally. Digital libraries provide literacy facilities without having to come to the library, take part in reducing the spread of the Covid-19 virus, and one of the government's efforts to increase reading interest in Indonesia. User experience in using the application usually conveyed in form of positive or negative reviews on Google Play which can be used to determine the quality of an application. However, too many reviews often make it difficult for readers to conclude the contents of the reviews. Based on that, this research aims to determine user sentiment of iPusnas application by conducting sentiment analysis using Support Vector Machine. The dataset used is iPusnas application reviews on Google Play with 6.946 clean data. Classification produces 94,24% accuracy, 92,38% precision, 83,86% recall, and 87,82% f1-score. This application has 75.1% positive sentiment and 24.9% negative sentiment with a list of frequently appearing words displayed in wordcloud. The final result of this analysis can be used as an evaluation to determine the steps for developing the application to be more optimal so that it can provide a better user experience.

https://doi.org/10.29407/int.v1i1.2656
PDF

References

Adhi Putra, A. D. (2021). Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 8(2), 636–646. https://doi.org/10.35957/jatisi.v8i2.962

Budianto, A., Maryono, D., & Ariyuana, R. (2019). Perbandingan K-Nearest Neighbor (KNN) dan Support Vector Machine (SVM) Dalam Pengenalan Karakter Plat Kendaraan Bermotor. Jurnal Ilmiah Pendidikan Teknik Dan Kejuruan, 11(1), 27. https://doi.org/10.20961/jiptek.v11i1.18018

Hanifah, S., Indriati, & Marji. (2019). Analisis Sentimen Kepuasan Pengguna Pada Ulasan Aplikasi Marketplace Menggunakan Metode BM25F dan Neighbor-Weighted K-Nearest Neighbor. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(10), 10309–10315.

Maulana, Y. I. (2018). Evaluasi Tingkat Kepuasan Pengguna Perpustakaan Digital Nasional (iPusnas) dengan Kerangka PIECES. Bianglala Informatika, 6(1), 51–55. https://doi.org/https://doi.org/10.31294/bi.v6i1.5904

Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-SAKTI), 5(2), 697–711.

Nur, I. T. A., Setiawan, N. Y., & Bachtiar, F. A. (2019). Perbandingan Performa Metode Klasifikasi SVM, Neural Network, dan Naive Bayes untuk Mendeteksi Kualitas Pengajuan Kredit di Koperasi Simpan Pinjam. Jurnal Teknologi Informasi Dan Ilmu Komputer, 6(4), 445–450. https://doi.org/10.25126/jtiik.2019641352

Putri, M. I., & Kharisudin, I. (2022). Analisis Sentimen Pengguna Aplikasi Marketplace Tokopedia Pada Situs Google Play Menggunakan Metode Support Vector Machine ( SVM ), Naïve Bayes , dan Logistic Regression. 5, 759–766.

Rahmatullah, B., Budiyono, P., & Saputra, S. A. (2021). Sentimen Analisis Transportasi Online Menggunakan Algoritma Support Vector Machine, Naive Bayes, dan KNN. Jurnal Ilmu Komputer JIK, IV(02), 9–15.

Septian, J. A., Fahrudin, T. M., & Nugroho, A. (2019). Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor. Journal of Intelligent Systems and Computation, 1(1), 43–49.

Sudrajat, M. R., Atika, P. D., & Herlawati. (2021). Implementasi Support Vector Machine (SVM) dan Naive Bayes untuk Analisis Sentimen Aplikasi KAI Access. Jurnal ICT : Information Communication & Technology, 20(2), 254–259.

Suhendra, M., Swastika, W., & Subianto, M. (2021). Analisis Sentimen Pada Ulasan Aplikasi Video Conference Menggunakan Naive Bayes. Sainsbertek Jurnal Ilmiah Sains & Teknologi, 2(1), 1–9. https://doi.org/10.33479/sb.v2i1.145

Yois, N. P., & Marlini. (2020). Sumber Daya Akses Perpustakaan Digital pada Masa Pandemi Corona. BIBLIOTIKA : Jurnal Kajian Perpustakaan Dan Informasi, 4(2), 218–222.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2022 Febbi Sena Lestari, Harliana Harliana, Muhamat Maariful Huda, Tito Prabowo

Downloads

Download data is not yet available.