Inflation Forecasting In East Java Using Autoregressive Integrated Moving Average Method
PDF

Keywords

Forecasting
Inflation
Arima

How to Cite

Syarifudin, I. M. ., Sanwidi, A. ., & Qomarudin, M. N. H. (2022). Inflation Forecasting In East Java Using Autoregressive Integrated Moving Average Method. Proceedings of the International Seminar on Business, Education and Science, 1(1), 280–290. https://doi.org/10.29407/int.v1i1.2685

Abstract

Inflation is an economic event that often occurs even though it is not wanted. Based on data from Badan Pusat Statistik in 2015-2020 inflation in East Java was 3.08%, 2.74%, 4.04%, 2.86%, 2.12%, 1.44%. From these data, it can be seen that inflation data is fluctuating. Therefore it is necessary to control inflation because high and unstable inflation can have a negative impact on the socio-economic conditions of the community. In addition, it also makes it difficult for the government to determine future policies. Seeing the importance of controlling inflation, it is necessary to study to predict the inflation rate in the future. One of the studies/methods to predict that is often used is the Autoregressive Integrated Moving Average (ARIMA) method or also known as the Box-Jenkins method. The ARIMA method is a method that is easy to use because it is flexible in following existing data patterns and has high accuracy and tends to have a small error value because of the detailed process. From the analysis results, the best ARIMA (p,d,q) model is the ARIMA model (2,1,1) with an AIC value of 76.77. The results of forecasting with the ARIMA model (2,1,1) respectively are 0.2593698, 0.1892990, 0.1340639, 0.1368309, 0.1572021, 0.1642381, 0.1598897, 0.1557251, 0.1556074, 0.1570151, 0.1576092, 0.1573511, 0.1570423, and 0.1570111.

https://doi.org/10.29407/int.v1i1.2685
PDF

References

Hartati. (2017, Maret). Penggunaan Metode Arima Dalam Meramal Pergerakan Inflasi. Jurnal Matematika, Sains, dan Teknologi, 18.

Hutasuhut, A., Anggraeni, W., & Tyasnurita, R. (t.thn.). Pembuatab Aplikasi Pendukung Keputusan Untuk Peramalan Persediaan Bahan Baku Produksi Plastik Blowing dan Inject menggunakan Metode ARIMA (Autoregressive Integratd Moving Average) Di CV. Asia. Jurnal Teknik Pomits, 3.

Juanda, B., & Junaidi. (t.thn.). Ekonometrika Deret Waktu Teori Dan Aplikasi. Bogor: IPB Press.

Noviyanto, A., Nugroho, R. A., & Kartini, D. (2015). Peramalan Permintaan Paving Blok Dengan Metode Arima. Konferensi Nasional Sistem & Informatika. Bali.

Pitaloka, R. A., Sugito, S., & Rahmawati, R. (2019). Perbandingan Metode Arima Box-Jenkins Dengan Arima Ensemble Pada Peramalan Nilai Impor Provinsi Jawa Tengah. Jurnal Gaussian. Jurnal Gaussian, 8(2), 194-207.

Rohmah, S. (2018). Implementasi Metode Autoregressive Integrated Moving Average (Arima) Dalam Peramalan Jangkapendek (Short Term Forecasting) Terhadap Jumlah Penumpang Kapal Dengan Eviews.

Rosadi, D., & Kurniawan, N. W. (2011). Analisis Ekonometrika & Runtun Waktu Terapan Dengan R. Yogyakarta: Andi.

Simbolon, C. D., Sujatmoko, B., & Sebayang, M. (2013). Analisa Statistika Untuk Curah Hujan Harian Pada Das Kampar Berdasarkan AIC (Akaike Information Criterion).

Statistik, B. P. (2021). Inflasi Provinsi Jawa Timur dan Kota Kediri 2014-2021. (Badan Pusat Statistik)

Sutawijaya, A. (2012). Pengaruh Faktor-Faktor Ekonomi Terhadap Inflasi Di Indonesia. Jurnal Organisasi Dan Manajemen, 8, 85-101.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2022 Imam Mukhtar Syarifudin, Ardhi Sanwidi, M. Nur Haqqul Qomaruddin Qomaruddin

Downloads

Download data is not yet available.