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Abstrak— Sebuah convolutional autoencoder diterapkan dalam kerangka deteksi anomali semi-supervised
untuk mengidentifikasi sel darah merah yang terinfeksi malaria. Model dilatih secara eksklusif
menggunakan citra sel normal guna menangkap ciri struktural alaminya, sehingga memungkinkan deteksi
anomali berdasarkan perbedaan rekonstruksi yang diukur menggunakan Structural Similarity Index
Measure (SSIM). Threshold optimal ditentukan melalui analisis ROC dan statistik Youden’s J. Evaluasi
pada dataset uji yang seimbang menghasilkan akurasi sebesar 76%, dengan presisi 76,5% dan recall 76%,
yang menyoroti tantangan dalam mendeteksi variasi patologis yang halus. Hasil menunjukkan potensi
unsupervised representation learning dalam deteksi malaria, sekaligus menyarankan bahwa penelitian di
masa depan sebaiknya difokuskan pada peningkatan sensitivitas dan robustnes melalui ekstraksi fitur yang
lebih canggih dan teknik hybrid supervised-unsupervised.
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Abstract— A convolutional autoencoder is applied within a semi-supervised anomaly detection framework
to identify malaria-infected red blood cells. The model is trained exclusively on normal cell images to
capture their inherent structural features, enabling detection of anomalies based on reconstruction
dissimilarities quantified by the Structural Similarity Index Measure (SSIM). The optimal detection
threshold is determined using ROC analysis and Youden’s J statistic. Evaluation on a balanced test dataset
achieves an accuracy of 76%, with 76.5% precision and 76% recall score, highlighting the challenges of
detecting subtle pathological variations. Results indicate the potential of unsupervised representation
learning for malaria detection, while suggesting that future research should focus on improving sensitivity
and robustness through advanced feature extraction and hybrid supervised-unsupervised techniques.
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I. PENDAHULUAN

Malaria merupakan penyakit infeksi yang masih menjadi ancaman serius bagi kesehatan
global, terutama di wilayah tropis seperti Indonesia. Penyakit ini disebabkan oleh parasit dari
genus Plasmodium yang ditularkan melalui gigitan nyamuk Anopheles betina yang terinfeksi.
Lima spesies Plasmodium diketahui dapat menginfeksi manusia, dengan Plasmodium falciparum
dan Plasmodium vivax sebagai penyebab paling umum [1]. Gejala klinis meliputi demam tinggi,
menggigil, sakit kepala, dan dapat berkembang menjadi komplikasi berat yang berujung pada
kematian apabila tidak ditangani dengan segera. Oleh karena itu, deteksi dini sangat krusial untuk
memastikan penanganan yang tepat dan cepat [2].
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Kemajuan teknologi medis, khususnya analisis citra mikroskopis berbasis kecerdasan buatan,
menawarkan solusi menjanjikan untuk mengatasi keterbatasan tenaga medis terlatih dalam
diagnosis malaria [3]. Salah satu tantangan utama dalam diagnosis penyakit berbasis citra medis
adalah interpretasi visual yang kompleks [4]. Peningkatan jumlah citra dan layanan kesehatan
menuntut sistem analisis yang tidak hanya cepat, tetapi juga akurat. Metode konvensional seperti
Convolutional Neural Network (CNN) dan Support Vector Machine (SVM) berbasis supervised
learning umum digunakan, namun memiliki keterbatasan karena memerlukan data berlabel dalam
jumlah besar, yang sulit diperoleh untuk kasus langka atau tahap awal infeksi [5]. Selain itu,
variasi struktur dan morfologi sel darah merah antar individu turut menyulitkan proses klasifikasi
[6].

Pendekatan alternatif yang tidak bergantung pada data berlabel menjadi penting dalam konteks
ini. Salah satu metode yang relevan adalah Autoencoder, sebuah pendekatan unsupervised
learning yang mampu mempelajari pola dari data normal tanpa anotasi [7]. Autoencoder bekerja
dengan merepresentasikan citra ke dalam dimensi lebih rendah melalui encoder, lalu
merekonstruksinya kembali menggunakan decoder. Perbedaan antara citra asli dan hasil
rekonstruksi digunakan sebagai indikator anomali. Dalam penelitian ini, fungsi kerugian yang
digunakan adalah Structural Similarity Index Measure (SSIM), yang mempertimbangkan struktur
spasial, luminansi, dan kontras, sehingga lebih sesuai untuk mempertahankan detail visual penting
pada citra medis [8], [9].

Beberapa studi sebelumnya menunjukkan efektivitas deep learning dalam deteksi malaria.
Fuhad ef al. [10] menggunakan autoencoder dengan MSE loss dan mencapai akurasi 99,74%.
Bhuiyan dan Islam [11] menggabungkan VGG16, VGG19, dan DenseNet201 dalam pendekatan
ensemble berbasis data berlabel, dengan akurasi 97,92%. Huq et al. [12] memperkenalkan
AnoMalNet untuk deteksi outlier berbasis autoencoder, mencapai akurasi 98,49%. Sementara itu,
Bergmann et al. [13] menunjukkan keunggulan SSIM dalam deteksi anomali citra industri.
Rajaraman et al. [14] juga memanfaatkan pre-trained CNN untuk ekstraksi fitur malaria, namun
tetap berbasis supervised learning. Berbeda dari studi tersebut, penelitian ini menerapkan
convolutional autoencoder dengan SSIM loss dalam kerangka wunsupervised guna
mempertahankan struktur spasial citra secara lebih optimal.

Berdasarkan latar belakang tersebut, penelitian ini memiliki dua rumusan masalah utama: (1)
bagaimana pemanfaatan convolutional autoencoder dengan fungsi kerugian SSIM dapat
mendeteksi anomali pada citra apusan darah tipis [8], [15]; dan (2) bagaimana mengevaluasi
performa model dalam membedakan citra normal dan anomali. Tujuan penelitian adalah
membangun model deteksi anomali berbasis convolutional autoencoder yang mampu mengenali
perbedaan struktur visual, serta mengevaluasi performanya menggunakan metrik akurasi,
sensitivitas, dan nilai AUC [16], [17].

Hasil dari penelitian ini diharapkan dapat berkontribusi dalam pengembangan metode deteksi
anomali berbasis deep learning yang lebih efektif, khususnya dalam analisis citra medis dengan
data anomali terbatas. Dengan memanfaatkan SSIM Joss function, sistem dapat
mempertimbangkan struktur spasial dalam proses identifikasi anomali. Selain kontribusi teknis di
bidang medis, penelitian ini juga berpotensi menjadi referensi bagi pengembangan sistem serupa
di bidang lain seperti industri manufaktur, keamanan, dan kesehatan lainnya.
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II. METODE

Penelitian ini mengadopsi pendekatan semi-supervised untuk mendeteksi anomali pada citra
apusan darah tipis dengan menggunakan model convolutional autoencoder yang dikombinasikan
dengan fungsi kerugian Structural Similarity Index Measure (SSIM). Metode ini dimulai dengan
melatih model menggunakan dataset yang hanya berisi citra normal sel darah merah, sehingga
autoencoder dapat mempelajari karakteristik struktural dan visual khas dari sampel normal.
Karena model tidak pernah terekspos pada data anomali selama pelatihan, kemampuannya dalam
merekonstruksi citra anomali menjadi terbatas, dan perbedaan inilah yang dimanfaatkan untuk
mengindikasikan keberadaan kelainan.

2.1 Data Collection

Dataset yang digunakan dalam penelitian ini diperoleh dari National Institutes of Health
(NIH), yang terdiri dari total 27.558 citra RGB apusan darah tipis. Dari jumlah tersebut, 13.779
citra diberi label terinfeksi parasit malaria, sementara 13.779 sisanya menunjukkan sel yang tidak
terinfeksi. Seluruh citra memiliki format yang konsisten dan tersedia secara publik, sehingga
cocok untuk penelitian yang dapat direproduksi. Dalam studi ini, hanya citra yang tidak terinfeksi
yang digunakan selama pelatihan untuk mensimulasikan skenario deteksi anomali semi-
supervised. Contoh citra sel tidak terinfeksi dan terinfeksi yang digunakan ditampilkan pada
Gambar 1.

Uninfected Images Infected Images
(a) (b)

Gambar 1. Sampel dari (a) citra sel sehat and (b) citra sel yang terinfeksi parasit.

2.2 Data Preprocessing

Pada tahap pra-pemrosesan data, seluruh citra diubah ukurannya menjadi 32x32 piksel untuk
memastikan konsistensi, dan dikonversi ke format grayscale guna mengurangi kompleksitas
komputasi tanpa kehilangan informasi struktural penting. Dataset kemudian dibagi menjadi tiga
bagian: 6.605 citra normal untuk pelatihan, 660 citra normal untuk validasi, serta 2.600 citra
normal dan 2.600 citra anomali (terinfeksi malaria) untuk pengujian. Pembagian ini
memungkinkan model dilatih hanya pada data normal, sehingga kemampuan deteksi anomali
dapat dievaluasi secara optimal pada tahap pengujian.

2.3 Aucoencoder

Autoencoder merupakan jaringan saraf unsupervised yang dirancang untuk merekonstruksi
data input melalui representasi laten berdimensi lebih rendah. Model ini terdiri dari dua komponen
utama: encoder, yang memetakan citra input x ke dalam representasi laten z, dan decoder, yang
merekonstruksi citra menjadi X. Ketika dilatih hanya dengan citra sel darah normal, autoencoder
belajar memodelkan distribusi data sehat. Oleh karena itu, kesalahan rekonstruksi pada citra yang
menyimpang (anomali) menjadi indikator utama deteksi. Proses ini digambarkan pada Gambar 2,

Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) 2025 146



INOTEK, Vol. 9
ISSN: 2580-3336 (Print) / 2549-7952 (Online)
Url: https://proceeding.unpkediri.ac.id/index.php/inotek/

di mana input x dikompresi menjadi representasi laten z oleh encoder, lalu direkonstruksi menjadi
X oleh decoder. Kesalahan rekonstruksi menjadi indikator utama dalam mendeteksi kelainan.
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Gambar 2. Arsitektur autoencoder sederhana

Karena model hanya terpapar citra normal selama pelatihan, maka ia cenderung gagal
merekonstruksi pola abnormal, seperti sel yang terinfeksi malaria. Error rekonstruksi dihitung
berdasarkan Structural Similarity Index Measure (SSIM), yang mempertimbangkan luminansi,
kontras, dan struktur spasial:

Quypz + C)Qoyz + C))

SSIM(x, %) =
(0 (ll;zz +pi+ C1)(0§ +0f + Cz)

(2)

Dengan:

Uy> g  Tata-rata citra x dan X,

oZ, gf : variansi,

Ox# : kovariansi,

C;, C, :konstanta untuk menstabilkan perhitungan.

Error kemudian didefinisikan sebagai:

Error Rekonstruksi = 1 — SSIM(x, X) 3

Dengan pendekatan ini, citra dengan struktur yang menyimpang dari pola normal (misalnya
akibat parasit) akan menghasilkan skor SSIM lebih rendah (error lebih tinggi), seperti
diilustrasikan pada Gambar 3.

Reconstruction Error (1 - SSIM): 0.0583 Reconstruction Error (1 - SSIM): 0.2103
Original (Non-Anomalous) Reconstruction Original (Anomalous) Reconstruction
L} - 1 - - 1
(a) (b)

Gambar 3. Deteksi anomali menggunakan autoencoder: (a) Citra normal dengan error rekonstruksi
0,0583. (b) Citra anomali dengan error rekonstruksi 0,2103.

Model yang digunakan adalah Convolutional Autoencoder (CAE), dengan arsitektur simetris.
Encoder terdiri dari tiga blok Conv2D yang diikuti oleh batch normalization dan max pooling,
yang mengecilkan dimensi spasial dari 32%32 ke 4x4, dan memperbesar channel depth dari 1 ke
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64. Decoder merupakan cerminan dari encoder, menggunakan Conv2DTranspose untuk
mengembalikan dimensi spasial ke bentuk semula. Aktivasi sigmoid digunakan pada output untuk
menjaga intensitas piksel dalam rentang [0,1]. Arsitektur keseluruhan model convolutional
autoencoder yang digunakan dalam studi ini ditampilkan pada Gambar 4.

3 16 3 1

; 2 18

@ InputLayer ' Conv2D ' BatchMormalization ' MaxPooling2D ' Conv2DTransposs
Gambar 4. Arsitektur convolutional autoencoder yang diusulkan

2.4 Konfigurasi Pelatihan
Autoencoder dilatih hanya menggunakan citra normal (tidak terinfeksi) untuk mempelajari

distribusi struktur sel sehat. Model dikompilasi dengan optimizer Adam (learning rate 0,01) untuk
optimasi gradien adaptif. Kualitas rekonstruksi diukur menggunakan Structural Similarity Index
Measure (SSIM) sebagai fungsi kerugian. Tujuan pelatihan adalah memaksimalkan kesamaan
antara input dan rekonstruksinya, atau setara dengan meminimalkan 1 — SSIM(x, X).

Proses pelatihan berlangsung selama 200 epoch dengan batch size 32. Validasi dilakukan
setiap akhir epoch menggunakan data citra normal. Model dilatih untuk merekonstruksi citra
grayscale berukuran 32x32 dalam format array NumPy berdimensi (samples, 32, 32, 1), agar
kompatibel dengan convolutional layer TensorFlow.

2.5 Metode Evaluasi
Untuk mengubah nilai error kontinu menjadi klasifikasi biner (normal vs. anomali),

diperlukan threshold. Threshold optimal ditentukan menggunakan statistik Youden’s J, yang
menyeimbangkan sensitivitas dan spesifisitas, dengan rumus:

J(8) = Sensitivitas(0) + Spesifisitas(0) — 1 4)

Sensitivitas (true positive rate) mengukur proporsi citra terinfeksi yang berhasil terdeteksi
sebagai anomali:
TP(0)

TPR(®) = TP(0) + FN(8) )

sedangkan spesifisitas (frue negative rate) mengukur proporsi citra normal yang dikenali dengan

benar:

B TN(0)
TNR(6) = TN(8) + FP(8) )

Setelah menemukan threshold optimal 6* yang memaksimalkan J(8), performa model

dievaluasi menggunakan metrik akurasi, precision, dan recall. Evaluasi ini mencerminkan
skenario semi-supervised, di mana model tidak dilatih secara eksplisit untuk mengenali sel
terinfeksi, melainkan belajar distribusi sel sehat dan menandai penyimpangan sebagai anomali.
Pendekatan ini memastikan keseimbangan antara deteksi infeksi yang akurat dan minimisasi
kesalahan pada citra normal.
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I11. HASIL DAN PEMBAHASAN

Model dievaluasi dengan mengukur kemampuannya dalam membedakan antara citra sel darah
merah normal dan yang terinfeksi malaria berdasarkan perbedaan hasil rekonstruksi. Setelah
pelatihan selesai, kemampuan generalisasi model diuji pada data uji yang belum pernah dilihat
sebelumnya, yang terdiri dari 2.600 citra normal dan 2.600 citra anomali (terinfeksi malaria).

Plot pada Gambar 5 menunjukkan perkembangan /oss rekonstruksi pada data pelatihan dan
validasi selama proses pelatihan. Loss pelatihan terus menurun dan akhirnya konvergen dengan
loss validasi, menandakan bahwa model berhasil mempelajari karakteristik struktural sel darah
normal tanpa mengalami overfitting.

Training and Validation Loss over Epochs

— Training Loss (1 - 55IM)
Validation Loss (1 - SSIM)

T T u T T T T T T
] 25 50 75 100 125 150 175 200
Epoch

Gambar 5. Kurva loss pelatihan dan validasi berdasarkan reconstruction error SSIM selama 200
epoch.

Untuk mengevaluasi kemampuan model membedakan citra sel darah normal dan terinfeksi
malaria berdasarkan reconstruction error (D = 1 — SSIM), distribusi skor disimilasi dihitung
untuk seluruh sampel uji. Distribusi nilai D untuk sel anomali bergeser ke kanan dengan rata-rata
Uanomaty = 0.005205, lebih tinggi dari pi,prme; = 0.002680 pada sel normal, menandakan
perbedaan struktural yang signifikan akibat anomali. Estimasi distribusi empiris menggunakan
Kernel Density Estimation (KDE) menghasilkan fungsi kepadatan p(D |y =0) dan
p(D |y =1),dimanay = 0 dany = 1 adalah label normal dan anomali. Ambang klasifikasi
optimal 0 ditentukan dengan memaksimalkan statistik Youden’s J, yaitu:

0* = argmax [TPR(9) + TPR(6) — 1] %)
6
Histogram skor disimilasi rekonstruksi ditampilkan pada Gambar 7.
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Gambar 6. Histogram skor disimilasi rekonstruksi (1 — SSIM) untuk sel darah normal dan
terinfeksi malaria, menunjukkan pergeseran skor anomali ke nilai lebih tinggi.

Selanjutnya, kurva Receiver Operating Characteristic (ROC) dianalisis dengan memplot true
positive rate (TPR) terhadap false positive rate (FPR) pada berbagai nilai ambang untuk
mengevaluasi performa klasifikasi. Threshold optimal 8 yang memaksimalkan statistik Youden’s
J(J = TPR — FPR) ditemukan pada 0,002585 dengan nilai J sebesar 0,5176, menyeimbangkan
sensitivitas dan spesifisitas dalam deteksi anomali. Area Under the Curve (AUC) ROC sebesar
0,8124 mengindikasikan kemampuan diskriminatif model yang baik. Kurva ROC dengan titik
ambang optimal ditunjukkan pada Gambar 8, memperlihatkan trade-off antara TPR dan FPR serta
efektivitas @ terpilih dalam memisahkan kelas normal dan anomali.

ROC Curve for Anomaly Detection
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Gambar 7. Kurva ROC model dengan threshold optimal (6 = 0,002585) yang memaksimalkan
Youden’s J, AUC = 0,8124.

Dengan menggunakan threshold rekonstruksi optimal 0,002585 yang diperoleh dari
maksialisasi statistik Youden’s J, performa klasifikasi model dievaluasi pada data uji. Confusion
matrix (persamaan 8) menunjukkan 1.870 frue negatives (sel normal terdeteksi benar), 2.313 true
positives (sel anomali terdeteksi benar), 887 false positives, dan 444 false negatives.
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Model mencapai akurasi keseluruhan sebesar 76%, menandakan kemampuan yang baik dalam
membedakan sel normal dan terinfeksi malaria. Precision kelas normal sebesar 0,81
mencerminkan proporsi prediksi normal yang benar, sedangkan recall kelas normal lebih rendah
di 0,68, mengindikasikan adanya normal yang keliru diklasifikasi sebagai anomali.

Sebaliknya, kelas anomali memiliki precision 0,72 dan recall lebih tinggi 0,84,
memperlihatkan kemampuan model yang lebih baik dalam mendeteksi sel terinfeksi meski
terdapat false positive. F'1-score masing-masing adalah 0,74 untuk normal dan 0,78 untuk anomali,
menandai keseimbangan antara precision dan recall. Tabel 1 merangkum metrik utama ini.

Tabel 1. Metrik performa kuantitatif autoencoder pada data uji

Kelas Precision  Recall FI1-Score
Normal 0.81 0.68 0.74
Anomali 0.72 0.84 0.78

Untuk memperdalam pemahaman, contoh rekonstruksi dari sampel normal dan anomali
dianalisis secara kualitatif. Setiap contoh menampilkan citra asli, hasil rekonstruksi, dan peta
error—perbedaan absolut per piksel antara input dan rekonstruksi. Analisis citra rekonstruksi
secara kualitatif dijelaskan dalam gambar 9.

SSIM Score: 0.9678 | Reconstruction Error: 0.0322 SSIM Score: 0.5765 | Reconstruction Error: 0.4235
Original Image (Normal) Reconstructed Image Reconstruction Error Map Original Imag«a/—\nomaly) Recons(rume;ﬂ Image Reconstruction Error Map
T o A
(@ (b)

Gambar 1. Hasil rekonstruksi: (a) sel normal dan (b) sel anomali. Setiap triplet menampilkan citra
input, rekonstruksi, dan error map beserta nilai SSIM dan error yang sesuai.

Gambar 8(a) memperlihatkan rekonstruksi sel darah normal dengan detail struktural yang
terjaga, menghasilkan SSIM tinggi 0,9678 dan error rendah 0,0322. Sebaliknya, pada gambar
8(b), sel anomali menunjukkan rekonstruksi yang tampak terdistorsi, terutama di bagian tengah,
dengan SSIM menurun drastis menjadi 0,5765 dan error meningkat ke 0,4235. Perbedaan visual
ini menguatkan bahwa model kurang mampu merepresentasikan struktur yang tidak terdapat pada
data pelatihan, sehingga rekonstruksi yang buruk menjadi indikator efektif dalam mendeteksi
anomali.

Hasil eksperimen menunjukkan bahwa penggunaan reconstruction error sebagai parameter
tunggal untuk deteksi anomali belum cukup baik pada citra sel darah merah. Meskipun model
dilatih hanya dengan sel normal, distribusi error antara sampel normal dan terinfeksi masih
tumpang tindih, menghasilkan tingkat false positive dan false negative yang tinggi. Beberapa citra
terinfeksi direkonstruksi dengan baik sehingga gagal terdeteksi, sementara variasi normal yang
tidak dilihat saat pelatihan menghasilkan error tinggi dan terklasifikasi sebagai anomali. Hal ini
menunjukkan bahwa reconstruction loss saja belum mampu menangkap makna semantik atau
patologis dari anomali, sehingga pendekatan berbasis feature extraction atau metode hybrid
mungkin diperlukan untuk meningkatkan sensitivitas dan spesifisitas di masa mendatang.
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IV. KESIMPULAN

Pendekatan pembelajaran representasi unsupervised berbasis convolutional autoencoder telah
dieksplorasi dalam kerangka deteksi anomali semi-supervised untuk membedakan citra sel darah
merah normal dan terinfeksi malaria. Model dilatih secara eksklusif pada data normal dan
dievaluasi berdasarkan kualitas rekonstruksi menggunakan SSIM. Threshold deteksi optimal
ditentukan melalui analisis kurva ROC dan statistik Youden. Meskipun model menunjukkan
performa klasifikasi yang moderat, hasil ini menegaskan keterbatasan penggunaan reconstruction
error sebagai satu-satunya parameter diskriminatif, terutama dalam domain citra medis yang
memiliki kompleksitas struktural tinggi. Temuan ini membuka arah riset lanjutan, termasuk mu/ti-
scale feature extraction, pemanfaatan bidang ilmu, dan penggabungan dengan pendekatan
supervised untuk meningkatkan ketelitian deteksi anomali pada kasus patologis dengan
variabilitas halus.
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